DOI QR코드

DOI QR Code

알루미나 시멘트에 기반한 복합재료의 열역학적 특성

Thermal and Mechanical Properties of Alumina Cementitious Composite Materials

  • 양인환 (군산대학교 토목공학과) ;
  • 이정환 (군산대학교 토목공학과 대학원생) ;
  • 최영철 (한국건설생활환경시험연구원)
  • 투고 : 2015.08.18
  • 심사 : 2015.08.25
  • 발행 : 2015.09.30

초록

이 연구에서는 고온의 축열재료로 사용하기 위한 알루미나 시멘트 복합재료의 역학적 및 열적 특성을 파악하고자 하였다. 알루미나 시멘트를 기본 바인더로 하고 플라이애시, 실리카퓸, CSA (calcium sulfo-aluminate) 및 그라파이트의 치환에 따른 고온에서의 물성을 파악하였다. 알루미나 시멘트 기반 복합재료의 역학적 특성으로서 열사이클 전과 후의 압축강도 및 인장강도를 측정하였다. 또한, 복합재료의 열적 특성으로서 열전도율과 비열을 측정하였다. 열사이클링 적용 이후의 잔류압축강도 측정결과, 알루미나 시멘트만을 사용한 배합과 알루미나 시멘트를 실리카퓸으로 치환한 배합의 압축강도가 크게 나타나며, 이 두 배합의 잔류강도 비는 65%를 상회한다. 그라파이트를 혼합한 복합재료의 비열이 가장 크고 이는 그라파이트의 비열이 크기 때문이다. 연구결과는 콘크리트를 고온조건에서의 축열매체로 활용하기 위한 실제적인 기초실험 자료로 활용될 수 있을 것으로 사료된다.

The mechanical and thermal properties of high temperature aluminate cementitious thermal storage materials were investigated in this paper. Alumina cement was used as basic binder and the effect of the replacement of fly ash, silica fume, calcium sulfo-aluminate and graphite for alumina cement was investigated. Experiments were performed to measure mechanical properties including compressive strength before and after thermal cycling, and split tensile strength, and to measure thermal properties including thermal conductivity and specific heat. Test results show that the residual compressive strengths of mixtures with alumina cement only, or alumina cement and silica fume were greater than those of the others. Additionally, the specific heat of mixture with graphite was largest in all the mixtures used in the study. The results of this study could be used to provide realistic information for material properties in thermal energy storage concrete in the future.

키워드

참고문헌

  1. Behloul, M., Chanvillard, G., Casanova, P., Orange, G. (2002). Fire resistance of Ductal ultra high performance concrete, Proceedings of the 1st fib Congress, Development of New Materials, Osaka, Japan, 421-430.
  2. Bentz, D.P., Peltz, M.A., Duran-Herrera, A., Valdez, P., Juarez, C.A. (2010). Thermal properties of high-volume fly ash mortars and concretes, Journal of Building Physics, 34(3), 263-275. https://doi.org/10.1177/1744259110376613
  3. Bilodeau, A., Kodur, V.R., Hoff, G.C. (2004). Optimization of the type and amount of polypropylene fibers for preventing the spalling of lightweight concrete subjected to hydrocarbon fire, Cement Concrete Composite Journal, 26(2), 163-175. https://doi.org/10.1016/S0958-9465(03)00085-4
  4. Faas, S.E. (1983). 10 MWe solar thermal central receiver pilot plant: Thermal storage subsystem evaluation, subsystem activation and controls testing phase, SAND 83-8015, Sandia National Laboratories, Albuquerque, NM.
  5. Hannant, D.J. (1998). Durability of polypropylene fibers in portland cement-based composites: eighteen years of data, Cement and Concrete Research, 28(12), 1809-1817. https://doi.org/10.1016/S0008-8846(98)00155-0
  6. John, E., Hale. M., Selvam. P. (2013). Concrete as a thermal energy storage medium for thermocline solar energy storage systems, Solar Energy, 96, 194-204. https://doi.org/10.1016/j.solener.2013.06.033
  7. Kodur, V.K.R., Sultan, M.A., (2003). Effect of temperature on thermal properties of high-strength concrete, Journal of Materials in Civil Engineering, 15(2), 101-107. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(101)
  8. Laing, D., Lehmann, D., Bahl, C. (2008). Concrete storage for solar thermal power plants and industrial process heat, Proceedings of the Third International Renewable Energy Storage Conference, Germany, Berlin, 1-6.
  9. Laing, D., Steinmann, W.D., Tamme, Richter, C., (2006). Solid media thermal storage for parabolic trough power plants, Solar Energy, 80, 1283-1289. https://doi.org/10.1016/j.solener.2006.06.003
  10. Laing, D., Steinmann, W.D., Tamme, R., Worner, A., Zunft, S. (2012). Advances in thermal energy storage development at the German Aerospace Center (DLR), Energy Storage Science and Technology, 1(1), 13-25.
  11. Laing, D., Steinmann, W.D., Viebahn, P., Grater, F., Bahl, C. (2010). Economic analysis and life cycle assessment of concrete thermal energy storage for parabolic trough power plants, Journal of Solar Energy Engineering, 132, 041013-1-6.
  12. Skinner, J.E., Brown, B.M., Selvam, R.P. (2011). Testing of high performance concrete as a thermal energy storage medium at high temperatures, Proceedings of the ASME 2011 5th International Conference on Energy Sustainability, Washington, DC, USA, 1-6.
  13. Strasser, M.N., Selvam, R.P. (2014). A cost and performance comparison of packed bed and structured thermocline thermal energy storage systems, Solar Energy, 108, 390-402. https://doi.org/10.1016/j.solener.2014.07.023
  14. Suhaendi, S.L., Horiguchi, T., Shimura, K. (2008). Effect of polypropylene fiber geometry on explosive spalling mitigation in high strength concrete under elevated temperature conditions, Proceedings of International Conference, Concrete for Fire Engineering, 08, 149-156.