DOI QR코드

DOI QR Code

Digital Imaging Source Identification Using Sensor Pattern Noises

센서 패턴 잡음을 이용한 디지털 영상 획득 장치 판별

  • 오태우 (국가보안기술연구소) ;
  • 현대경 (국방과학연구소) ;
  • 김기범 (국가보안기술연구소) ;
  • 이해연 (금오공과대학교 컴퓨터소프트웨어공학과)
  • Received : 2015.07.09
  • Accepted : 2015.09.24
  • Published : 2015.12.31

Abstract

With the advance of IT technology, contents from digital multimedia devices and softwares are widely used and distributed. However, novice uses them for illegal purpose and hence there are needs for protecting contents and blocking illegal usage through multimedia forensics. In this paper, we present a forensic technique for identifying digital imaging source using sensor pattern noise. First, the way to acquire the sensor pattern noise which comes from the imperfection of photon detector against light is presented. Then, the way to identify the similarity of digital imaging sources is explained after estimating the sensor pattern noises from the reference images and the unknown image. For the performance analysis of the proposed technique, 10 devices including DSLR camera, compact camera, smartphone and camcorder are tested and quantitatively analyzed. Based on the results, the proposed technique can achieve the 99.6% identification accuracy.

IT 기술이 급격히 발전함에 따라서 디지털 멀티미디어 장치 및 소프트웨어를 이용한 콘텐츠가 범람하고 있다. 그러나 불법적 목적을 가지고 있는 사용자가 활용함에 따라 이를 이용한 범죄가 증가되고 있고 멀티미디어 포렌식을 통한 콘텐츠의 보호 및 불법 사용 차단의 필요성이 대두되고 있다. 본 논문에서는 센서 패턴 잡음을 이용하여 디지털 영상 획득 장치 판별을 위한 포렌식 기술에 대하여 제안한다. 먼저 광자 탐지기의 빛에 대한 민감도가 불완전해 생기는 센서 패턴 잡음을 검출하기 위한 기술에 대하여 제시한다. 그다음에 참조 영상들에 대하여 센서 패턴 잡음을 추정하고, 검사 영상에 대하여 센서 패턴 잡음을 추정한 후 두 잡음 사이의 유사성 계산을 통하여 디지털 영상을 획득한 장치에 대하여 판별하는 방법을 설명한다. 제안한 기술의 성능 분석을 위하여 DSLR 카메라, Compact 카메라, 스마트폰, 캠코더 등을 포함한 총 10대 장치에 대하여 개발한 알고리즘에 대한 정량적 성능의 분석을 수행하였고, 그 결과 99.6%의 판별 정확도를 달성하였다.

Keywords

References

  1. J. Lukas, J. Fridrich, and M. Goljan, "Digital camera identification from sensor pattern noise," IEEE Transactions on Information Forensics Security, Vol.1, No.2, pp. 205-214, Jun., 2006. https://doi.org/10.1109/TIFS.2006.873602
  2. M. Chen, J. Fridrich, and M. Goljan, "Source digital camcorder identification using ccd photo response non-uniformity," Proceedings of SPIE Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX, San Jose, CA, pp.1G-1H, 2007.
  3. M. Golian, "Digital camera identification from images- estimating false acceptance probability," Lecture Notes in Computer Science, Vol.5450, pp.454-468, 2009.
  4. S. Bayram, H. T. Sencar, N. Memon, and I. Avcibas, "Source Camera Identification Based on CFA Interpolation," Proceedings of IEEE International Conference on Image Processing(ICIP), pp.69-72, 2005.
  5. S. Bayram, H. T. Sencar, N. Memon, and I. Avcibas, "Source Camera Identification Based on CFA Interpolation," Proceedings of IEEE International Conference on Image Processing (ICIP), pp.69-72, 2005.
  6. W. van Houten and Z. Geradts, "Source video camera identification for multiply compressed videos originating from YouTube," Digital Investigation, Vol.6, pp.48-60, 2009. https://doi.org/10.1016/j.diin.2009.05.003
  7. K. Kuroki, K. Kurosawa, and N. Saitoh, "An Approach to Individual Video Camera Identification," Journal of Forensic Sciences, Vol.47, No.1, pp.97-102, 2002.
  8. A. C. Popescu and H. Farid, "Exposing Digital Forgeries by Detecting Traces of Resampling," IEEE Transactions on Signal Processing, Vol.53, No.2, pp.758-767, Feb., 2005. https://doi.org/10.1109/TSP.2004.839932
  9. W. Wang and H. Farid, "Exposing Digital Forgeries in Video by Detecting Double MPEG Compression," Proceedings of the 8th workshop on ACM Multimedia and security, pp.37-47, 2006.
  10. D.-K. Hyun, S.-J. Ryu, H.-Y. Lee, and H.-K. Lee, "Detection of Upscale-Crop and Partial Manipulation in Surveillance Video based on Sensor Pattern Noise," Sensors, Vol.13, No.9, pp.12605-12631, Sep., 2013. https://doi.org/10.3390/s130912605
  11. C. H. Choi, H.-Y. Lee, and H.-K. Lee, "Estimation of Color Modification in Digital Images by CFA Pattern Change," Forensic Science International, An International Journal, Elsevier, Vol.226, Issue.1-3, pp.94-105, Mar., 2013. https://doi.org/10.1016/j.forsciint.2012.12.014
  12. J.-W. Lee, M.-J. Lee, H.-Y. Lee, and H.-K. Lee, "Screenshot Identification by Analysis of Directional Inequality of Interlaced Video," EURASIP Journal on Image and Video Processing, Springer, Vol.2012, No.7, pp.1-15, May, 2012. https://doi.org/10.1186/1687-5281-2012-1
  13. C.-T. Li, "Source Camera Identification Using Enhanced Sensor Pattern Noise," IEEE Transactions on Information Forensics Security, Vol.5, No.2, pp.280-287, Jun., 2010. https://doi.org/10.1109/TIFS.2010.2046268