Abstract
There is a wide variety of data quality attributes such as the ones proposed by the ISO/IEC organization and also by many other domestic and international institutions. However, it takes considerable time and costs to apply those criteria and guidelines to real environment. Therefore, it needs to define data quality evaluation attributes which are easily applicable and are not influenced by organizational environment limitations. The purpose of this paper is to derive data quality attributes and order of their priorities based on customer requirements for managing the process systematically and evaluating the data quantitatively. This study identifies the customer cognitive constructs of data quality attributes using the RGT(Repertory Grid Technique) based on a Korean quality standard model (DQC-M). Also the correlation analysis on the identified constructs is conducted, and the evaluation attributes is prioritized and ranked using the AHP. As the results of this paper, the consistent system, the accurate data, the efficient environment, the flexible management, and the continuous improvement are derived at the first level of the data quality evaluation attributes. Also, Control Compliance(13%), Regulatory Compliance(10%), Requirement Completeness(9.6%), Accuracy(8.4%), and Traceability(6.8%) are ranked on the top 5 of the 19 attributes in the second level.
데이터품질 속성으로는 ISO/IEC 기관 및 국내/외 여러 기관에서 제시한 속성이 존재하지만, 이러한 기준 및 가이드를 현실적으로 조직에 적용하기에는 시간과 비용이 상당히 소요된다. 따라서 조직환경의 제약사항이 존재하여도 적용 가능한 데이터품질 평가속성의 정의가 필요하다. 이 연구의 목적은 고객의 요구사항 기반하에 프로세스를 체계적으로 관리하고, 정량적으로 데이터를 평가하기 위한 데이터품질 평가속성과 우선순위 도출에 관한 연구이다. 본 연구에서는 데이터품질 표준(DQC-M)을 매개체로 RGT 기법을 사용하여 데이터품질 속성의 고객 인지구조(Construct)를 도출하고, 도출된 Construct 간의 상관분석을 수행하여 AHP기법으로 평가속성의 가중치 및 우선순위를 선별하였다. 그 결과 데이터품질 평가속성에서 1레벨에서는 일관된 체계, 정확한 데이터, 효율적 환경, 유연한 관리, 지속적 개선 순위가 결정되었다. 또한 2레벨의 19개 속성 중에서는 통제성(13%), 준거성(10%), 요구완전성(9.6%), 정확성(8.4%), 추적가능성(6.8%)이 상위 5순위로 결정되었다.