DOI QR코드

DOI QR Code

Survey on Quantitative Performance Evaluation Methods of Image Dehazing

안개 제거 기술의 정량적인 성능 평가 기법 조사

  • 이성민 (동국대학교 전자전기공학부) ;
  • 유제택 (국방과학연구소) ;
  • 정승원 (동국대학교 멀티미디어공학과) ;
  • 나성웅 (충남대학교 전기정보통신공학부)
  • Received : 2015.09.08
  • Accepted : 2015.11.09
  • Published : 2015.12.31

Abstract

Image dehazing has been extensively studied, but the performance evaluation method for dehazing techniques has not attracted significant interest. This paper surveys many existing performance evaluation methods of image dehazing. In order to analyze the reliability of the evaluation methods, synthetic hazy images are first reconstructed using the ground-truth color and depth image pairs, and the dehazed images are then compared with the original haze-free images. Meanwhile we also evaluate dehazing algorithms not by the dehazed images' quality but by the performance of computer vision algorithms before/after applying image dehazing. All the aforementioned evaluation methods are analyzed and compared, and research direction for improving the existing methods is discussed.

다양한 안개 제거 기술이 개발되어왔으나 이들의 성능을 정량 정성적으로 평가하는 방식에 대한 연구는 다소 부족하다. 본 논문에서는 안개 제거 기술의 성능을 평가하기 위하여 사용할 수 있는 다양한 척도를 살펴본다. 성능 척도의 신뢰도 검증을 위하여, 고화질 칼라 깊이 영상을 이용하여 안개 영상을 합성하고 안개 제거 영상과 원 영상을 비교하는 방식을 택한다. 한편 안개 제거 기술을 화질을 기준으로 평가하는 방식이 아닌, 안개 제거 전 후 영상에 대한 컴퓨터 비전 기법의 성능을 비교하는 방식을 검토한다. 다양한 안개 제거 기술 성능 척도에 대한 비교 분석 및 문제점에 대한 해결 방안을 토의한다.

Keywords

References

  1. S. G. Narasimhan and S. K. Nayar, "Contrast restoration of weather degraded images," IEEE Trans. Pattern Anal. Mach. Intell., Vol.25, No.6, pp.713-724, 2003. https://doi.org/10.1109/TPAMI.2003.1201821
  2. R. Fattal, "Single image dehazing," ACM Trans. Graph., Vol.27, No.72, pp.1-9, 2008.
  3. R. T. Tan, "Visibility in bad weather from a single image," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp.1-8, Anchorage, USA, Jun., 2008.
  4. S. K. Nayar and S. G. Narasimhan, "Vision in bad weather," in Proc. IEEE Conf. Computer Vision, pp.820-827, Kerkyra, Greece, Sept., 1999.
  5. K. He, J. Sun, and X. Tang, "Single image haze removal using dark channel prior," in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp.1956-1963, Miami, USA, Jun., 2009.
  6. X. Liu and J. Y. Hardeberg, "Fog removal algorithms: Survey and perceptual evaluation," Visual Information Processing (EUVIP), 2013 4th European Workshop on, pp.118-123, 2013.
  7. J.-P. Tarel, N. Hautiere, L. Caraffa a, H. Halmaoui, and D. Gruyer, "Vision enhancement in homogeneous and heterogeneous," IEEE Trans. Intelligent Transportation Systems Magazine, Vol.4, No.2, pp.6-20, 2012.
  8. Y.-Q. Zhang, Y. Ding, J.-S. Xiao, J. Liu, and Z. Guo, "Visibility enhancement using an image filtering approach," EURASIP Journal on Advances in Signal Processing, Vol.2012, No.1, pp.220, 2012. https://doi.org/10.1186/1687-6180-2012-220
  9. X. Lan, L. Zhang, H. Shen, Q. Yuan, and H. Li, "Single image haze removal considering sensor blur and noise," EURASIP Journal on Advances in Signal Processing, Vol.2013, No.1, pp.86, 2013. https://doi.org/10.1186/1687-6180-2013-86
  10. J.-P. Tarel and N. Hautiere, "Fast visibility restoration from a single color or gray level image," ICCV, pp.2201-2208, 2009.
  11. A. K. Tripathi and S. Mukhopadhyay, "Removal of fog from images: A review," IETE Technical Review, 2012.
  12. N. Hautiere, J. P. Tarel, D. Aubert, and E. Dumont, "Blind contrast enhancement assessment by gradient ratioing at visible edges," Image Analysis & Stereology, Vol.27, No.2, pp.87-95, 2008. https://doi.org/10.5566/ias.v27.p87-95
  13. K. He, J. Sun, and X. Tang, "Guided image filtering," IEEE Tans. Pattern Anal. Mach. Intell., Vol.35, No.6, pp.1397-1409, 2013. https://doi.org/10.1109/TPAMI.2012.213
  14. Y.-H. Lai, Y.-L. Chen, and C. -T. Hsu, "Single-image dehazing via optimal transmission map under scene priors," IEEE Trans. Circuits Syst. Video Technol., Vol.25, No.1, 2015.
  15. S. Mori, H. Nishida, and H. Yamada, "Optical Character Recognition," John Wiley&Sons Inc., 1999.