DOI QR코드

DOI QR Code

Heat Exchanger Ranking Program Using Genetic Algorithm and ε-NTU Method for Optimal Design

유전알고리즘과 ε-NTU 모델을 이용한 다양한 열교환기의 최적설계 및 성능해석

  • Lee, Soon Ho (School of Mechanical Engineering, Pusan National University) ;
  • Kim, Minsung (School of Mechanical Engineering, Pusan National University) ;
  • Ha, Man Yeong (School of Mechanical Engineering, Pusan National University) ;
  • Park, Sang-Hu (School of Mechanical Engineering, Pusan National University) ;
  • Min, June Kee (Rolls-Royce Technology Centre in Thermal Management, Pusan National University)
  • 이순호 (부산대학교 기계공학부) ;
  • 김민성 (부산대학교 기계공학부) ;
  • 하만영 (부산대학교 기계공학부) ;
  • 박상후 (부산대학교 기계공학부) ;
  • 민준기 (부산대학교 롤스로이스 대학기술센터)
  • Received : 2014.04.11
  • Accepted : 2014.08.22
  • Published : 2014.11.01

Abstract

Today, computational fluid dynamics (CFD) is widely used in industry because of the availability of high-performance computers. However, full-scale analysis poses problems owing to the limited resources and time. In this study, the performance and optimal size of a heat exchanger were calculated using the effectiveness-number of transfer units (${\varepsilon}-NTU$) method and a database of characteristics heat exchanger. Information about the geometry and performance of various heat exchangers is collected, and the performance of the heat exchanger is calculated under the given operating conditions. To determine the optimal size of the heat exchanger, a Genetic Algorithm (GA) is used, and MATLAB and REFPROP are used for the calculation.

오늘날 고성능컴퓨터로 인해 많은 산업분야에서 전산해석이 사용되고 있다. 하지만 정해진 컴퓨터자원과 시간에 의해 3 차원 풀 스케일 해석에서는 많은 어려움 등이 있다. 본 연구에서 ${\varepsilon}-NTU$ 식과 열교환기 성능의 데이터베이스를 이용해 열교환기의 성능예측프로그램을 개발하였다. 다양한 타입의 열교환기 형상정보와 성능데이터베이스를 구축하였고, 이를 바탕으로 정해진 작동 조건에서 열교환기의 성능을 계산하였다. 계산된 정보를 바탕으로 최적의 사이즈를 갖는 형상을 찾기 위해 유전알고리즘(Genetic Algorithm)을 이용하였다. 계산을 위해 상용 소프트웨어인 MATLAB 과 REFPROP 이 사용되었다.

Keywords

References

  1. Min, J. K., Jeong, J. H. and Ha, M. Y., 2009, "High Temperature Heat Exchanger Studies for Applications to Gas Turbines," Heat and Mass Transfer, Vol. 46, pp. 175-186. https://doi.org/10.1007/s00231-009-0560-3
  2. Kim, M., Min, J. K. and Ha, M. Y., 2014, "Numerical Study for the Full-Scale Analysis of Plate-Type Heat Exchanger Using One-Dimensional Flow Network Model and $\varepsilon$-NTU Method," Journal of Korean Society for Computational Fluids Engineering, Vol. 19 pp. 47-56. https://doi.org/10.6112/kscfe.2014.19.1.047
  3. Wang, L., 2001, "Performance Analysis and Optimal Design of Heat Exchanger and Heat Exchanger Networks," PhD thesis, Division of Heat transfer, Department of Heat and Power exgineering, Lund Institute of Technology.
  4. Wang, L. and Sunden, B., 2001, "Design Methodology for Multistream Plate-Fin Heat Exchanger in Heat Exchanger Networks," Heat Transfer Engineering, Vol. 22, pp. 3-11. https://doi.org/10.1080/01457632.2000.11877514
  5. Shah, R. K., 1975, "Laminar Flow Friction and Forced Convection Heat Transfer in Ducts of Arbitrary Geometry," Journal of the Heat and Mass Transfer, Vol. 10, No. 7-8, pp. 849-862.
  6. Doo, J. H., Ha, M. Y., Min. J. K., Stieger, R., Rolt, A. and Son, C., 2013, "Theoretical Predictions of Longitudinal Heat Conduction Effect in Cross- Corrugated Heat Exchanger," International Journal of Heat and Mass Transfer, Vol. 55, pp. 4129-4138.
  7. Doo, J. H., Ha, M. Y., Min. J. K., Stieger, R., Rolt, A. and Son, C., 2013, "An Investigation of Cross- Corrugated Heat Exchanger Primary Surfaces for Advanced Intercooled-Cycle Aero Engines (part-1: Design Optimization of Primary Suface)," International Journal of Heat and Mass Transfer, Vol. 61, pp. 138-148. https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.084
  8. Luo, X., Li, M. and Roetzel, W., 2002 "A General Solution for One-Dimensional Multistream Heat Exchangers and Their Networks," International Journal of Heat and Mass Transfer, Vol. 45, pp. 2695-2705. https://doi.org/10.1016/S0017-9310(02)00003-0
  9. Reneaume, J. M. and Niclout, M., "MINLP Optimization of Plate fin Heat Exchangers," Chemical and Biochemical Engineering Quarterly, Vol. 17, pp. 65-76.
  10. Reneaume, J. M. and Niclout, M., 2011, Optimal Design of Plate-Fin Heat Exchangers Using Both Heuristic based procedures and mathematical Programming Techniques, in R.K. Shah (Ed.) Third International Conference on Compact Heat Exchangers and Enhancement Technology for the Process Industries, Davos, Switzerland, pp. 135-142.
  11. Xie, G. N., Sunden, B. and Wang, Q. W, 2008, "Otimization of Compact Heat Exchangers by a Genetic Algorithm," Applied Thermal Engineering, Vol. 28, pp. 895-906. https://doi.org/10.1016/j.applthermaleng.2007.07.008
  12. Xie, G. N., Wang Q. W. and Sunden, B., 2008 "Application of a Genetic Algorithm for Thermal Design of Fin-and-Tube Heat Exchangers," Heat Transfer Engineering Vol. 29, pp. 597-607. https://doi.org/10.1080/01457630801922337
  13. Mishra, M., Das, P. K. and Saranqi, S., 2004, "Optimum Design of Crossflow Plate-Fin Heat Exchangers Through Genetic Algorithm," International Journal of Heat Exchangers Vol. 5, pp. 379-401.
  14. Kays, W. M., London, L. L., 1984, Compact Heat Exchangers, McGrawHill Book co, New York.
  15. Shah, R. K., Sekulic, D. P., 2003, Fundamentals of Heat Exchanger Design, J.Wiley, London, UK.