DOI QR코드

DOI QR Code

Numerical Study on Surface Air-Oil Heat Exchanger for Aero Gas-Turbine Engine Using One-Dimensional Flow and Thermal Network Model

항공기 가스터빈용 오일쿨러 해석을 위한 1 차원 열유동 네트워크 수치적 모델 개발 및 연구

  • Kim, Young Jin (School of Mechanical Engineering, Pusan National Univ.) ;
  • Kim, Minsung (School of Mechanical Engineering, Pusan National Univ.) ;
  • Ha, Man Yeong (School of Mechanical Engineering, Pusan National Univ.) ;
  • Min, June Kee (Rolls-Royce Technology Centre in Thermal Management, Pusan Nat'l Univ.)
  • 김영진 (부산대학교 기계공학부) ;
  • 김민성 (부산대학교 기계공학부) ;
  • 하만영 (부산대학교 기계공학부) ;
  • 민준기 (부산대학교 롤스로이스 대학기술센터)
  • Received : 2014.04.11
  • Accepted : 2014.06.26
  • Published : 2014.11.01

Abstract

In an aero gas-turbine engine, a surface air-oil heat exchanger (SAOHE) is used to cool the oil system for the gearboxes and electric generators. The SAOHE is installed inside the fan casing of the engine in order to dissipate the heat from the oil system into the bypass duct stream. The purpose of this study was to develop an effective numerical method for designing an SAOHE for an aero gas-turbine engine. A two-dimensional model using a porous medium was developed to evaluate the aero-thermal performance of the fins of the heat exchanger, and a one-dimensional flow and thermal network program was developed to save time and cost in the evaluation of the heat exchanger performance. Using this network program, the pressure drop and heat transfer performance of the heat exchanger were predicted, and the results were compared with two-dimensional computational fluid dynamics results and experiment data for validation.

항공기용 가스터빈 엔진에 있어서, 기어 어셈블리 및 전자장비에 사용되는 오일의 냉각을 위하여 열교환기가 사용되며 이를 Surface air-oil heat exchanger (SAOHE) 라고 한다. 이 열교환기는 엔진 팬 케이싱 내부에 설치되며 기어박스 시스템 및 전자장비로부터 바이패스 덕트 후류 쪽으로 열을 소산시킨다. 본 연구의 목적은 SAOHE 의 설계를 위한 효율적인 수치해석방법을 개발하는 것이다. SAOHE 설치에 따른 핀에서의 열공력학적 성능을 평가하기 위하여 다공성 모델을 활용한 2 차원 수치해석을 수행하였고, 열교환기 성능평가에 대해 시간 및 비용적으로 효과적인 1 차원 열유동 네트워크 프로그램을 개발하였다. 이 프로그램을 이용하여 열교환기의 압력강하 및 열전달 성능을 예측하였고, 1 차원 열유동 네트워크 프로그램을 검증하기 위해 2 차원 전산해석 결과 및 실험 결과와 비교하였다.

Keywords

References

  1. Min. J. K., Jeong. J. H. and Ha, M. Y., 2009, "High Temperature Heat Exchanger Studies for Applications to Gas Turbines," Heat and Mass Transfer, Vol. 46, pp. 175-186. https://doi.org/10.1007/s00231-009-0560-3
  2. Robertson, A. J., Neely, A. J. and Ireland, P. T., 1997, "Local Heat Transfer Coefficients on Flat Continuous Interrupted and Corrugated External Fins," ASME paper 97-GT-380 presented at I.G.T.I. conference.
  3. Neely, A. J., Ireland, P. T. and Harper, L. R., 1997, "Extended Surface Convective Cooling Studies of Engine Components Using the Transient Liquid Crystal Technique," Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 211.3: 273-287. https://doi.org/10.1243/0957650971537187
  4. Sparrow, E. M. and Ramsey, J. W., 1978, "Heat Transfer and Pressure Drop for a Staggered Wall- Attached Array of Cylinders with Tip Clearance," International Journal of Heat and Mass Transfer, 21.11: 1369-1378 https://doi.org/10.1016/0017-9310(78)90200-4
  5. Mutlu, I. and Al-Shemmeri, T. T., 1994, "The Effect of Crossflow on Heat Transfer Augmentation with Interrupted Longitudinal Fins," Experimental thermal and fluid science, 8.1: 91-100. https://doi.org/10.1016/0894-1777(94)90076-0
  6. Chapman, C. L., Lee, S. and Schmidt, B. L., 1994, "Thermal Performance of an Elliptical Pin Fin Heat Sink," Semiconductor Thermal Measurement and Management Symposium, 1994. SEMI-THERM X., Proceedings of 1994 IEEE/CPMT 10th.
  7. Sata, T., Iwasaki, H. and Ishizuka, M., 1997, "Development of Prediction Technique for Cooling Performance of Finned Heat Sink in Uniform Flow," Components, Packaging, and Manufacture, Vol. 20, No. 2, pp. 160-166. https://doi.org/10.1109/95.588568
  8. Luo, X., Li, M. and Roetzel, W., 2002, "A General Solution for One-Dimensional Multistream Heat Exchagers and Their Networks," International Journal of Heat and Mass Transfer, Vol. 45, pp. 2695-2705. https://doi.org/10.1016/S0017-9310(02)00003-0
  9. Fried, E. and Idelchik, I. E., 1989, "Flow Resistance," Taylor & Francis, pp. 210-229.
  10. Ko, J. A., Kim, S. K., Ha, M. Y., Min, J. K., Stieger, R., Mason, S., Doo, J. H. and Son, C., 2013, "A Study on the Installation of the Surface Air-Oil Heat Exchanger for the Application to Aero Gas-Turbine Engine," 21th ISABE Conference.
  11. Shah, R. K. and Sekulic, D. P., 2003, Fundamentals of Heat Exchanger Design, J. Wiley, London, UK.