DOI QR코드

DOI QR Code

Characteristics and Corrosion Behaviors of Quaternary (Co/Ni/P/Mn) Electroless Plating

4성분 무전해도금(Co/Ni/P/Mn)의 특성 및 부식거동

  • Hur, Ho (Department of Fire Safety Management, Mokwon University)
  • 허호 (목원대학교 소방안전관리학과)
  • Received : 2014.03.18
  • Accepted : 2014.05.09
  • Published : 2014.06.30

Abstract

The quaternary alloy (Co/Ni/P/Mn) coatings were prepared using electroless plating on the polypropylene. Compositions of the quaternary alloys (Co/Ni/P/Mn) were controlled by the amount of agents. The composition by EDS, morphology with SEM, film thickness, and surface electrical resistance of the samples were measured. Higher phosphorous content samples give larger electric resistance, thus a relationship is admitted between P content and electric resistance. The corrosivity of the coatings were evaluated by electrochemical methods in the 3.5 wt% NaCl and 5.0 wt% $H_2SO_4$ solutions, respectively. It was concluded that phosphorous addition enhances resistivity in the corrosion.

본 연구에서 폴리프로필렌을 모재로 사용하여 Co/Ni/P/Mn 4가지 금속을 무전해도금 방법으로 코팅하였다. 이 때 도금욕의 시약의 양을 조절함으로써 폴리프로필렌 위에 도금된 금속의 조성을 다르게 조정하였다. 이러한 조건으로 만들어진 도금 금속에 대하여 두께, 전기적 표면 저항, 주사형 전자현미경을 사용한 표면상태, 에너지 분산형 분석기를 통한 금속조성을 측정하였다. 인 함량이 높을수록 전지저항이 커지는 것이 관찰되어 인 함량과 전지전도성간의 상관성이 있는 것이 관찰되었다. 또한 코팅 금속의 수용액에서의 부식성을 3.5 wt% 염화나트륨 용액과 5.0 wt% 황산용액에서 비교한 결과 인을 많이 포함할수록 내식성이 강함을 알 수 있었다.

Keywords

References

  1. Ashassi-Sorkhabi, H., and Rafizadeh., S. H., "Effect of Coating Time and Heat Treatment on Structures and Corrosion Characteristics of Electroless Ni-P Alloy Deposits," Surf. Coat. Technol., 176(3), 318-326 (2004). https://doi.org/10.1016/S0257-8972(03)00746-1
  2. Palaniappa, M., and Seshadri, S. K., "Structural and Phase Transformation Behaviour of Electroless Ni-P and Ni-W-P deposits," Master Sic. Eng. A. Struct. Mater. Prop. Microstruct. Process., 460-461, 638-644 (2007). https://doi.org/10.1016/j.msea.2007.01.134
  3. Narayanan, T. S., Seshadri, S. K., and Balaraju, J. N., "Structure and Phase Transformation Behaviour of Electroless Ni-P Composite Coatings," Mater. Res. Bull., 41, 847-860 (2006). https://doi.org/10.1016/j.materresbull.2005.09.024
  4. Balaraju, J. N., Narayanan, T. S., and Seshadri, S. K., "Electroless Ni-P Composite Coatings," J. Appl. Electrochem., 33, 807-816 (2003). https://doi.org/10.1023/A:1025572410205
  5. Sha, W., and Pan, J. S., "Electroplating Ni-P films and their Corrosion Property," J. Alloy. Compd., 182, L1-L3 (1992). https://doi.org/10.1016/0925-8388(92)90568-T
  6. Sha, W., "Thermodynamic Analysis of Crystallisation in Amorphous Solids," J Alloy. Compd., 322, L17-L18 (2001). https://doi.org/10.1016/S0925-8388(01)01258-0
  7. Keong, K. G., Sha, W., and Mahnov, S., "Hardness Evolution of Electroless Nickel-Phosphorus Deposits with Thermal Processing," Surf Coat. Technol., 168, 263-274 (2003). https://doi.org/10.1016/S0257-8972(03)00209-3
  8. Chi-Chang, H., and Bai, A., "Influences of the Phosphorus Content on Physicochemical Properties of Nickel-Phosphorus deposits," Mater. Chem. Phys., 77(1), 215-225 (2003). https://doi.org/10.1016/S0254-0584(01)00592-2
  9. Garcia-Alonso, M. C., Escudero, M. L., Lopez, V., and Macias, A., "The Corrosion Behaviour of Laser Treated Ni-P Alloy Coatings on Mild Steel," Corros. Sci., 38, 515-530 (1996). https://doi.org/10.1016/0010-938X(96)00151-5
  10. Revesz, A., Lendvai, J., Loranth, J., Padar, J., and Bakonyi, I., "Nanocrystallization Studies of an Electroless Plated Ni-P Amorphous Alloy," J. Electrochem. Soc., 148, C715-C720 (2001). https://doi.org/10.1149/1.1405518
  11. Balaraju, J. N., and Rajam, K. S., "Electroless Deposition of Ni-Cu-P, Ni-W-P and Ni-W-Cu-P alloys," Surf. Coat. Technol., 195, 154-161 (2005). https://doi.org/10.1016/j.surfcoat.2004.07.068
  12. Bo-Ping, Z., Habazaki, H., Kawashima, A., Asami, K., and Hashimoto, K., "The Corrosion Behavior of Amorphous Ni-Cr-19p Alloys in Hydrochloric Acid," Corros. Sci., 33, 667-679 (1992). https://doi.org/10.1016/0010-938X(92)90101-8
  13. Osaka, T., Yamazaki, H., Saito, I., and Kawaguchi, J., "Change of Electroless Ni-Mo-P Alloy Films by Transient Pulse Heating," : J. Electrochem. Soc., 136(11), 3418-3422 (1989). https://doi.org/10.1149/1.2096464
  14. Liu, Y., and Zhao, Q., "Study of Electroless Ni-Cu-P coatings and Their Anti-corrosion Properties," Appl. Surf. Sci., 228, 57-62 (2004). https://doi.org/10.1016/j.apsusc.2003.12.031
  15. Georgieva, J., Kawashima, S., Armyanov, S., Valova, E., Hubin, A., Koyama, Y., Steenhaut, O., Haydu, J., Delpancke, J. L., and Tsacheva, T., "Electroless Deposition of Ni-Sn-P and Ni-Sn-Cu-P Coatings," J. Electrochem. Soc., 152, C783-C788 (2005). https://doi.org/10.1149/1.2050467
  16. Bangwei Z., Haowen X., and Xiewen X., "Autocatalytic deposition of Nickel-Tin-Copper-Phosphorus Amorphous Alloys," Metal Fishing, 97, 35-41 (1999).
  17. Balaraju J. N., and Rajam K. S., "Electroless Deposition of Ni-Cu-P, Ni-W-P and Ni-W-Cu-P Alloys," Surf. Coat. Technol., 195, 154-161 (2005). https://doi.org/10.1016/j.surfcoat.2004.07.068
  18. Brenner, A., Couch, D. E., and Williams, E. K., "Electrodeposition of Alloys of Phosphorus with Nickel or Cobalt," J. Res. Nat. Bur. Stand., 44(1), 109 (1950). https://doi.org/10.6028/jres.044.009
  19. Pearlstein, F., and Weightman, R. F., "Electroless Deposition of Nickel Alloys," Electrochem. Technol., 427, 6-13 (1968).
  20. Wang, L., Guiffang, L., Yuan, X., Zhang, B., and Zhang, J., "Composition, Structure and Corrosion Characteristics of Ni-Fe-P and Ni-Fe-P-B Alloy Deposits Prepared by Electroless Plating," Surf. Coat. Technol., 126, 272-278 (2000). https://doi.org/10.1016/S0257-8972(00)00545-4
  21. Schwartz, M., and Mallory, G. O., "Effect of Heat Treatments on Magnetic Properties of Electroless Nickel Alloys," J. Electrochem. Soc., 123, 606-614 (1976). https://doi.org/10.1149/1.2132894
  22. Onho, I., Wakabayashi, O., and Haruyama, S., "Anodic Oxidation of Reductants in Electroless Plating," J. Electrochem. Soc., 132, 2323-2330 (1985). https://doi.org/10.1149/1.2113572