DOI QR코드

DOI QR Code

A Study on Optical Properties of Nanocomposite Composed of Au Nanorods and Organic Dyes

금 나노막대와 유기 염료로 구성된 나노복합체의 광학특성 연구

  • Kim, Ki-Se (Department of Chemistry, Seoul National University) ;
  • Yoo, Seong Il (Department of Polymer Engineering, Pukyong National University) ;
  • Sohn, Byeong-Hyeok (Department of Chemistry, Seoul National University)
  • Received : 2014.04.22
  • Accepted : 2014.05.23
  • Published : 2014.06.30

Abstract

In this study, we studied optical properties on the layer-by-layer (LbL) assemblies consisting of Au nanorods and organic dyes. For this purpose, poly (allylamine hydrochloride), PAH and poly (styrene sulfonate), PSS were selected as ionic polymers and rhodamine B isothiocyanate (RB) was utilized as an organic dye based on its spectral overlap with plasmon band of Au nanorods. In the view point of assembling methods, RB was covalently attached to PAH, then, LbL structure of Au [PSS/PAH]2/PSS/PAH-RB was prepared by sequential coating of PAH, PSS, PAH-RB on Au nanorods. Since the prepared LbL assembly exhibits both plasmonic and fluorescent properties, we studied the mutual nanorod-dye properties by dissolving Au nanorods.

본 연구에서는 자기조립다층박막을 활용하여 금 나노막대와 유기염료로 이루어진 복합체의 형성과 나노막대-염료간의 광학적 특성에 관한 연구를 진행하였다. 이를 위해 이온성 고분자로는 폴리아릴아민 하이드로클로라이드와 폴리스티렌 술폰산염을 선택하였으며, 나노막대와의 스펙트럼 중첩을 고려하여 유기염료는 로다민 비 이소디오시아네이트를 사용하였다. 자기조립적인 관점에서는 수용액상에서 이들 화합물을 순차적으로 금 나노막대 표면에 코팅시킴으로써 표면 플라즈몬 특성과 형광특성을 동시에 갖는 조립체를 형성하였으며, 그 후 금 나노막대를 화학적으로 제거 해나가면서 나노막대-염료간의 상호의존 특성을 연구하였다.

Keywords

References

  1. Pelaz, B., Jaber, S., de Aberasturi, D. J., Wulf, V., Aida, T., de la Fuente, J. M., Feldmann, J., Gaub, H. E., Josephson, L., Kagan, C. R., Kotov, N. A., Liz-Marza, L. M., Mattoussi, H., Mulvaney, P., Murray, C. B., Rogach, A. L., Weiss, P. S., Willner, I., and Parak, W. J., "The State of Nanoparticle-Based Nanoscience and Biotechnology: Progress, Promises, and Challenges," ACS Nano, 6, 8468-8483 (2012). https://doi.org/10.1021/nn303929a
  2. Kim, T. H., Cho, K. S., Lee, E. K., Lee, S. J., Chae, J., Kim, J. W., Kim, D. H., Kwon, J. Y., Amaratunga, G., Lee, S. Y., Choi, B. L., Kuk, Y., Kim, J. M., and Kim, K., "Full-Colour Quantum Dot Displays Fabricated by Transfer Printing," Nat. Photonics, 5, 176-182 (2011). https://doi.org/10.1038/nphoton.2011.12
  3. Ozbay, E., "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science, 311, 189-193 (2006). https://doi.org/10.1126/science.1114849
  4. Kotov, N. A., "Inorganic Nanoparticles as Protein Mimics," Science, 330, 188-189 (2010). https://doi.org/10.1126/science.1190094
  5. Zrazhevskiy, P., Sena, M., and Gao, X., "Designing Multifunctional Quantum Dots for Bioimaging, Detection, and Drug Delivery," Chem. Soc. Rev., 39, 4326-4354 (2010). https://doi.org/10.1039/b915139g
  6. Hou, W., and Cornin, S. B., "A Review of Surface Plasmon Resonance-Enhanced Photocatalysis," Adv. Funct. Mater., 23, 1612-1619 (2013). https://doi.org/10.1002/adfm.201202148
  7. Zhang, H., Jin, M., Xiong, Y., Lim, B., and Xia, Y., "Shape-Controlled Synthesis of Pd Nanocrystals and Their Catalytic Applications," Accounts Chem. Res., 46, 1783-1794 (2103).
  8. Giannini, V., Fernandez-Domiguez, A. I., Heck, S. C., and Maier, S. A., "Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters," Chem. Rev., 111, 3888-3912 (2011). https://doi.org/10.1021/cr1002672
  9. Lakowicz, J. R., Ray, K., Chowdhury, M., Szmacinski, H., Fu, Y., Zhang, J., and Nowaczyk, K., "Plasmon-Controlled Fluorescence: A New Paradigm in Fluorescence Spectroscopy," Analyst, 133, 1308-1346 (2008). https://doi.org/10.1039/b802918k
  10. Liu, N., Prall, B. S., and Klimov, V. I., "Hybrid Gold/Silica/ Nanocrystal-Quantum-Dot Superstructures: Synthesis and Analysis of Semiconductor-Metal Interactions," J. Am. Chem. Soc., 128, 15362-15363 (2006). https://doi.org/10.1021/ja0660296
  11. Mayilo, S., Kloster, M. A., Wunderlich, M., Lutich, A., Klar, T. A., Nichtl, A., Kurzinger, K., Stefani, F. D., and Feldmann, J., "Long-Range Fluorescence Quenching by Gold Nanoparticles in a Sandwich Immunoassay for Cardiac Troponin T," Nano Lett., 9, 4558-4563 (2009). https://doi.org/10.1021/nl903178n
  12. Lee, J., Javed, T., Skeini, T., Govorov, A. O., Bryant, G. W., and Kotov, N. A., "Bioconjugated Ag Nanoparticles and CdTe Nanowires: Metamaterials with Field-Enhanced Light Absorption," Angew. Chem.-Int. Edit., 45, 4819-4823 (2006). https://doi.org/10.1002/anie.200600356
  13. Kim, K.-S., Kim, J. H., Kim, H., Laquai, F., Arifin, E., Lee, J. K., Yoo, S. I., Sohn, B. H. "Switching Off FRET in the Hybrid Assemblies of Diblock Copolymer Micelles, Quantum Dots, and Dyes by Plasmonic Nanoparticles," ACS Nano, 6, 5051-5059 (2012). https://doi.org/10.1021/nn301893e
  14. Ray, K., Badugu, R., and Lakowicz, J. R., "Polyelectrolyte Layer-by-Layer Assembly To Control the Distance between Fluorophores and Plasmonic Nanostructures," Chem. Mater., 19, 5902-5909 (2007). https://doi.org/10.1021/cm071510w
  15. Schneider, G., and Decher, G., "Distance-Dependent Fluorescence Quenching on Gold Nanoparticles Ensheathed with Layer-by-Layer Assembled Polyelectrolytes," Nano Lett., 6, 530-536 (2006). https://doi.org/10.1021/nl052441s
  16. Jin, Y., and Gao, X., "Plasmonic Fluorescent Quantum Dots," Nat. Nanotechnol., 4, 571-576 (2009). https://doi.org/10.1038/nnano.2009.193
  17. Nikoobakht, B., and El-Sayed, M. A., "Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method," Chem. Mater., 15, 1957-1962 (2003). https://doi.org/10.1021/cm020732l
  18. Kaschak, D. M., Lean, J. T., Waraksa, C. C., Saupe, G. B., Usami, H., and Mallouk, T. E., "Photoinduced Energy and Electron Transfer Reactions in Lamellar Polyanion/Polycation Thin Films: Toward an Inorganic "Leaf," J. Am. Chem. Soc., 121, 3435-3445 (1999). https://doi.org/10.1021/ja982985e