DOI QR코드

DOI QR Code

총탄 충격이 가해진 반응 시스템의 파괴 거동에 관한 수치적 연구

Numerical Simulations of Dynamic Response of Cased Reactive System Subject to Bullet Impact

  • Kim, Bohoon (Dept. of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Kim, Minsung (Dept. of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Doh, Youngdae (Agency for Defense Development) ;
  • Kim, Changkee (Agency for Defense Development) ;
  • Yoo, Jichang (Agency for Defense Development) ;
  • Yoh, Jai-Ick (Dept. of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.)
  • 투고 : 2014.03.03
  • 심사 : 2014.03.26
  • 발행 : 2014.06.01

초록

무기체계 개발에서 예상치 못한 고속의 총탄 충격을 받았을 때 반응 시스템의 폭발 반응을 예측하는 것은 안정성 확보를 위하여 매우 중요하다. 본 연구에서는 LX-17(92.5% TATB, 7.5% Kel-F)과 AP 기반의 고체 추진제(88% AP, 12% HTPB)가 충전된 반응 시스템에 한계 속도로 충돌하는 총탄 충격을 가했을 경우 발생하는 폭굉 현상 및 파괴 거동을 I&G 모델이 적용된 2차원 하이드로 수치해석을 통해 규명하고자 하였다. 해석 결과, LX-17의 경우 충격-폭굉 천이 현상(SDT)이 주요한 메커니즘으로 작용한 반면 고체 추진제는 상대적으로 안정한 모습을 보였다. 즉, 시스템의 파괴는 내부 압력의 급격한 증가와 격렬한 화학반응을 동반하는 고에너지 물질의 폭굉 현상이 그 원인이며, 폭발등급이 낮은 경우에는 고속 충돌에도 발화되지 않아 커버가 완전 파쇄에 이르지 않는 것으로 관찰되었다.

Safety of reactive systems is one of the most important research areas in the field of weapon development. A NoGo response or at least a low-order explosion should be ensured to prevent unexpected accidents when the reactive system is impacted by high-velocity projectile. We investigated the shock-induced detonation of cased reactive systems subject to a normal projectile impact to the cylindrical surface based on two-dimensional hydrodynamic simulations using the I&G chemical rate law. Two types of energetic materials, namely LX-17 and AP-based solid propellant, were considered to compare the dynamic responses of the reactive system when subjected to the threshold impact velocity. It was found that shock-to-detonation transition phenomena occurred in the cased LX-17, whereas no full reaction occurred in the propellant.

키워드

참고문헌

  1. Jones, D. A., 2008, "Expedited Transition of Propulsion Modeling and Simulation Capability," W9113M-08-C-0019, pp. 2-1-4-10.
  2. Defisher, S., Pfau, D. and Dyka, C., 2010, "Insensitive Munitions Modeling Improvement Efforts," Insensitive Munitions & Energetic Materials Technology Symposium, No. 0704-0188, pp. 1-11.
  3. Lee, E. L. and Tarver, C. M., 1980, "Phenomenological Model of Shock Initiation in Heterogeneous Explosives," Physics of Fluids, Vol. 23, No. 12, pp. 2362-2372. https://doi.org/10.1063/1.862940
  4. Tarver, C. M., Urtiew, P. A. and Tao, W. C., 1996, "Shock Initiation of a Heated Ammonium Perchlorate-Based Propellant," Combustion and Flame, Vol. 105, pp. 123-131. https://doi.org/10.1016/0010-2180(95)00181-6
  5. Lu, J. P., 2001, "Evaluation of the Thermochemical Code - CHEETAH 2.0 for Modelling Explosives Performance," DSTO-TR-1199, pp. 1-25.
  6. Lee, E. L., Hornig, H. C. and Kury, J. W., 1968, "Adiabatic Expansion of High Explosive Detonation Products," UCRL-50422, pp. 1-21.
  7. Kim, B. and Yoh, J., 2012, "A Study on Development of Reaction Rate Equation for Reactive Flow Simulation in Energetic Materials," Korean Society of Propulsion Engineers, Vol. 16, No. 5, pp. 47-57. https://doi.org/10.6108/KSPE.2012.16.5.047
  8. Kim, B. and Park, J. and Yoh, J., 2013, "A Pressure-Based Detonation Rate Model for Shock to Detonation Transition of Energetic Materials," 24th International Colloquium on the Dynamics of Explosions and Reactive Systems, 2013 ICDERS-155, pp. 1-6.
  9. Guilkey, J. E., Harman, T. B. and Banerjee, B., 2007, "An Eulerian-Lagrangian Approach for Simulating Explosions of Energetic Devices," Computers and Structures, Vol. 85, No. 11, pp. 660-674. https://doi.org/10.1016/j.compstruc.2007.01.031
  10. Johnson, G. R. and Cook, W. H., 1985, "Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures," Engineering Fracture Mechanics, Vol. 21, No. 1, pp. 31-48. https://doi.org/10.1016/0013-7944(85)90052-9
  11. Ugrcic, M., 2013, "Numerical Simulation of the Fragmentation Process of High Explosive Projectiles," Scientific Technical Review, Vol. 63, No. 2, pp. 47-57.
  12. Barrington, L. M., 1994, "Full Scale Insensitive Munitions Testing of the RAN 5"/54 Cartridge Case," DSTO-TR-0097, AR-008-967, pp. 1-33.
  13. Chen, J. K., Ching, H. K. and Allahdadi, F. A., 2007, "Shock-Induced Detonation of High Explosives by High Velocity Impact," Journal of Mechanics of Materials and Structures, Vol. 2, No. 9, pp. 1701-1721. https://doi.org/10.2140/jomms.2007.2.1701
  14. Mott, N. F., 1947, "Fragmentation of Shell Cases," Proceedings of the Royal Society of London A : Mathematical and Physical Sciences, Vol. 189, No. 1018, pp. 300-308. https://doi.org/10.1098/rspa.1947.0042