DOI QR코드

DOI QR Code

친수성/소수성 수평 표면상에서의 액적이송 메커니즘

Droplet Transport Mechanism on Horizontal Hydrophilic/Hydrophobic Surfaces

  • 명현국 (국민대학교 기계시스템공학부)
  • 투고 : 2014.02.04
  • 심사 : 2014.04.14
  • 발행 : 2014.06.01

초록

유체이송 기술은 최근 마이크로 유체시스템 개발에서 핵심문제로 인식되고 있다. 본 연구에서는 최근 저자가 제안한 외부동력을 사용하지 않고 액적을 이송시킬 수 있는 새로운 개념인 친수성/소수성 수평 표면에서의 액적이송을 자체개발 코드(PowerCFD)를 사용하여 수치해석하였다. 수치해석에 사용된 코드는 보존적인 압력기반 유한체적방법에 기초한 비정렬 셀 중심 방법 및 VOF 방법에 체적포착법인 CICSAM을 채용하고 있다. 액적 내 및 주위의 속도벡터, 압력분포 및 전체운동에너지와 같은 수치해석 결과를 제시하고 이 결과들을 통해 액적이송 메커니즘을 규명하였다.

A fluid transport technique is a key issue for the development of microfluidic systems. In this study, the movement of a droplet on horizontal hydrophilic/hydrophobic surfaces, which is a new concept to transport droplets without external power sources that was recently proposed by the author, was simulated using an in-house solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The droplet transport mechanism is examined through numerical results that include velocity vectors, pressure contours, and total kinetic energy inside and around the droplet.

키워드

참고문헌

  1. Yang, J. T., Chen, J. C., Huang, K. J. and Yeh, J. A., 2006, "Droplet Manipulation on a Hydrophobic Textured Surface with Roughened Patterns," J. Microelectromechanical Systems, Vol. 15, No. 3, pp. 697-707. https://doi.org/10.1109/JMEMS.2006.876791
  2. Shen, W., Kim, J. and Kim, C. J., 2002, "Controlling the Adhesive Force for Electrostatic Actuation of Microscale Mecury Drop by Physical Surface Modification," in Proc. IEEE Int. Conf. MEMS, Las Vegas, NV, Jan., pp. 52-55.
  3. He B. and Lee, J., 2003, "Dynamic Wettability Switching by Surface Roughness Effect," in Proc. IEEE Int. Conf. MEMS, Kyoto, Japan, Jan., pp. 120-123.
  4. Liao, Q., Qang, H., Zhu, X. and Li, M., 2006, "Liquid Droplet Movement on Horizontal Surface with Gradient Surface Energy," Science in China Series E: Technological Sciences, Vol. 49, No. 6, pp. 733-741. https://doi.org/10.1007/s11431-006-2032-z
  5. Ito, Y., Heydari, M., Hashimoto, A., Konno, T., Hirasawa, A., Hori, S., Kurita, K. and Nakajima, A., 2007, "The Movement of a Water Droplet on a Gradient Surface Prepared by Photo-degradation," Langmuir, Vol. 23, No. 4, pp. 1845-1850. https://doi.org/10.1021/la0624992
  6. Myong, H. K., 2014, "A New Concept to Transport a Droplet on Horizontal Hydrphilic/Hydrophobic Surfaces" Trans. Korean Soc. Mech. Eng. B, Vol. 38, No. 3, pp. 263-270. https://doi.org/10.3795/KSME-B.2014.38.3.263
  7. Myong, H. K. and Kim, J. E., 2006, "A Study on an Interface Capturing Method Applicable to Unstructured Meshes for the Analysis of Free Surface Flow" KSCFE J. of Computational Fluids Engineering, Vol. 11, No. 4, pp. 14-19.
  8. Myong, H. K., 2009, "Numerical Simulation of Multiphase Flows with Material Interface due to Density Difference by Interface Capturing Method" Trans. Korean Soc. Mech. Eng. B, Vol. 33, No. 6, pp. 443-453. https://doi.org/10.3795/KSME-B.2009.33.6.443
  9. Myong, H. K., 2008, "Comparative Study on High Resolution Schemes in Interface Capturing Method Suitable for Unstructured Meshes" Trans. Korean Soc. Mech. Eng. B, Vol. 32, No. 1, pp. 23-29. https://doi.org/10.3795/KSME-B.2008.32.1.023
  10. Myong, H. K., 2011, "Numerical Simulation of Surface Tension-Dominant Multiphase Flows with Volume Capturing Method and Unstructured Grid System" Trans. Korean Soc. Mech. Eng. B, Vol. 35, No. 7, pp. 723-733. https://doi.org/10.3795/KSME-B.2011.35.7.723
  11. Blackbill, J. U., Kothe, C. and Zamach, C., 1992, "A Continuum Method for Modeling Surface Tension," J. Comput. Phys., Vol. 100, pp. 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
  12. Myong, H. K., 2012, "Numerical Study on Multiphase Flows Induced by Wall Adhesion" Trans. Korean Soc. Mech. Eng. B, Vol. 36, No. 7, pp. 721-730. https://doi.org/10.3795/KSME-B.2012.36.7.721
  13. Myong, H. K. and Kim, J., 2005, "Development of 3D Flow Analysis Code using Unstructured Grid System(1st Report, Numerical Method)," Trans. Korean Soc. Mech. Eng. B, Vol. 29, No. 9, pp. 1049-1056. https://doi.org/10.3795/KSME-B.2005.29.9.1049
  14. Myong, H. K. and Kim. J., 2006, "Development of a Flow Analysis Code using an Unstructured Grid with the Cell-Centered Method," J. of Mechanical Science and Technology (KSME Int. J.), Vol. 20, No. 12, pp. 2218-2229. https://doi.org/10.1007/BF02916339
  15. Ubbink, O., 1997, Numerical Prediction of Two Fluid Systems with Sharp Interface, PhD Thesis, University of London.