DOI QR코드

DOI QR Code

TLM 및 CTLM을 이용한 실리콘 태양전지 전면전극소재의 접촉 비저항 측정 비교연구

Comparison of Contact Resistivity Measurements of Silver Paste for a Silicon Solar Cell Using TLM and CTLM

  • 신동윤 (국립부경대학교 인쇄정보공학과) ;
  • 김유리 (국립부경대학교 인쇄정보공학과)
  • Shin, Dong-Youn (Dept. of Graphic Arts Information Engineering, Pukyong Nat'l Univ.) ;
  • Kim, Yu-Ri (Dept. of Graphic Arts Information Engineering, Pukyong Nat'l Univ.)
  • 투고 : 2014.03.11
  • 심사 : 2014.04.22
  • 발행 : 2014.06.01

초록

실리콘 태양전지의 실버 전극과 이미터층 사이의 접촉 비저항은 원형 접촉 비저항 측정법과 선형 비저항 측정법을 이용하여 계측되어 왔다. 원형 접촉 비저항 측정법은 누설 전류를 차단하기 위한 메사 에칭 등의 부가적인 공정이 요구되지 않는 장점이 있으며, 선형 접촉 비저항 측정법은 완성된 태양전지로부터 직접 샘플을 취득하여 측정을 수행할 수 있다는 장점이 있다. 본 연구에서는 이 두 가지 측정법들을 이용하여 실리콘 태양전지 전면 전극의 접촉 비저항을 계산하기 위한 저항값들을 측정할 때 수반되는 문제점들에 대한 비교연구를 수행하였으며, 선형 접촉 비저항 측정법이 실버 전극의 선폭과 두께에 따른 접촉 비저항 변화를 좀더 정확하게 묘사할 수 있는 요인에 대해 설명하였다.

Contact resistivity between silver electrodes and the emitter layer of a silicon solar cell wafer has been measured using either the circular transmission line method or the linear transmission line method. The circular transmission line method has an advantage over the linear transmission line method, in that it does not require an additional process for mesa etching to eliminate the leakage current. In contrast, the linear transmission line method has the advantage that its specimen can be acquired directly from a silicon solar cell. In this study, measured resistance data for the calculation of contact resistivity is compared for these two methods, and the mechanism by which the linear transmission line method can more realistically reflect the impact of the width and thickness of a silver electrode on contact resistivity is investigated.

키워드

참고문헌

  1. Kim, Y. K., Jeong, T. E., Oh, D. H. and Kim, N. S., 2010, "Synthesis of Top Connector for Solar Cells by Using Silver Paste," Trans. Korean Soc. Mech. Eng. A, Vol. 34, pp. 1837-1842. https://doi.org/10.3795/KSME-A.2010.34.12.1837
  2. Pospischil, M., Zengerle, K., Specht, J., Birkle, G., Koltay, P., Zengerle, R., Henning, A., Neidert, M., Mohr, C., Clement, F. and Biro, D., 2011, "Investigations of Thick-Film-Paste Rheology for Dispensing Applications," Energy Procedia, Vol. 8, pp. 449-454. https://doi.org/10.1016/j.egypro.2011.06.164
  3. Lee, C.-J. and Shin, D.-Y., 2012, "Mask Patterning for Two-Step Metallization Processes of a Solar Cell and Its Impact on Solar Cell Efficiency," Trans. Korean Soc. Mech. Eng. B, Vol. 36, pp. 1135-1140. https://doi.org/10.3795/KSME-B.2012.36.11.1135
  4. Kim, D.-H., Ryu, S.-S., Shin, D., Shin, J.-H., Jeong, J.-J., Kim, H.-J. and Chang, H. S., 2012, "The Fabrication of Front Electrodes of Si Solar Cell by Dispensing Printing," Mat. Sci. Eng. B, Vol. 177, pp. 217-222. https://doi.org/10.1016/j.mseb.2011.12.027
  5. Xu, C., Wang, J., Wang, M., Jin, H., Hao, Y. and Wen, C. P., 2006, "Reeves's Circular Transmission Line Model and Its Scope of Application to Extract Specific Contact Resistance," Solid State Electron., Vol. 50, pp. 843-847. https://doi.org/10.1016/j.sse.2006.03.007
  6. Lewis, L., Maaskant, P. P. and Corbett, B., 2006, "On the Specific Contact Resistance of Metal Contacts to p-Type GaN," Semicond. Sci. Technol., Vol. 21, pp. 1738-1742. https://doi.org/10.1088/0268-1242/21/12/041
  7. Kato, H., Takeuchi, D., Tokuda, N., Umezawa, H., Okushi, H. and Yamasaki, S., 2009, "Characterization of Specific Contact Resistance on Heavily Phosphorus-Doped Diamond Films," Diam. Relat. Mater., Vol. 18, pp. 782-785. https://doi.org/10.1016/j.diamond.2009.01.033
  8. Vinod, P. N., Chakravarty, B.C., Lal, M., Kumar, R. and Singh, S.N., 2000, "A Novel Method for the Determination of the Front Contact Resistance in Large Area Screen Printed Silicon Solar Cells," Semicond. Sci. Technol., Vol. 15, pp. 286-290. https://doi.org/10.1088/0268-1242/15/3/311
  9. Vinod, P. N., 2011, "Specific Contact Resistance Measurements of the Screen-Printed Ag Thick Film Contacts in the Silicon Solar Cells by Three-Point Probe Methodology and TLM Method," J. Mater. Sci.- Mater. El., Vol. 22, pp. 1248-1257. https://doi.org/10.1007/s10854-011-0295-z
  10. Vinod, P. N., 2013, "The Electrical and Microstructural Properties of Electroplated Screen- Printed Ag Metal Contacts in Crystalline Silicon Solar Cells," RSC Adv., Vol. 3, pp. 14106-14113. https://doi.org/10.1039/c3ra40823j
  11. Lee, C. L., 2004, "Investigations on Ohmic Contact to p-Doped Gallium Nitride," MSc Dissertation, National University of Singapore.
  12. Goetzberger, A., Knobloch, J. and Voss, B., 1998, "Crystalline Silicon Solar Cells," John Wiley & Sons Ltd., Chichester, England.
  13. Jeon, S. J., Koo, S. M., and Hwang, S. A., 2009, "Optimization of Lead- and Cadmium-Free Front Contact Silver Paste Formulation to Achieve High Fill Factors for Industrial Screen-Printed SI Solar Cells," Sol. Energ. Mat. Sol. C., Vol. 93, pp. 1103-1109. https://doi.org/10.1016/j.solmat.2009.01.003
  14. Hong, K.-K., Cho, S.-B., Huh, J.-Y., Park, H. J., and Jeong, J.-W., 2009, "Role of PbO-Based Glass Frit in Ag Thick-Film Contact Formation for Crystalline Si Solar Cells," Met. Mater. Int., Vol. 15, pp. 307-312. https://doi.org/10.1007/s12540-009-0307-1
  15. Pysch, D., Mette, A., Filipovic, A. and Glunz, S. W., 2009, "Comprehensive Analysis of Advanced Solar Cell Contacts Consisting of Printed Fine-Line Seed Layers Thickened by Silver Plating," Prog. Photovolt: Res. Appl., Vol. 17, pp. 101-114. https://doi.org/10.1002/pip.855