DOI QR코드

DOI QR Code

Experimental Study of Vane Expander Prototype Applied to Micro Organic Rankine Cycle

초소형 유기랭킨사이클 적용 프로토 타입 베인 팽창기에 관한 실험적 연구

  • Shin, Dong Gil (Department of Engine Research, Korea Institute of Machinery & Materials) ;
  • Kim, Young Min (Department of Engine Research, Korea Institute of Machinery & Materials)
  • 신동길 (한국기계연구원 그린동력연구실) ;
  • 김영민 (한국기계연구원 그린동력연구실)
  • Received : 2014.11.13
  • Accepted : 2014.12.15
  • Published : 2014.12.31

Abstract

In this study, performances of the vane expander protype for micro organic Rankine cycle with refrigerant R134a as a working fluid have been analyzed. While operating organic Rankine cycle for analysing expander efficiencies such as overall efficiencies, volumetric efficiencies and mechanical efficiencies under $110^{\circ}C$ of expander inlet temperature, the power of the expander, inlet temperature of expander, inlet pressure of expander and the flow rate of the working fluid(refrigerant R134a) have been measured while varying the rotational speed of the expander. It was found that the more the expander revolution speed is high, the more the expander power, overall efficiencies and volumetric efficiencies are higher. In case of 500 rpm of rotational speed, overall efficiencies are 6~7% and in case of 1000 rpm, overall efficiencies are 11~12%. We have found that low volumetric efficiencies result in poor overall efficiencies.

본 연구에서는 프로토 타입 베인 팽창기가 적용된 초소형 유기 랭킨사이클을 구성하고, 팽창기 전단 온도가 약 $110^{\circ}C$이고, 냉매유량을 일정하게 유지한 조건에서 베인 팽창기 회전수를 변화시키면서, 팽창기 출력, 효율 및 팽창기 전후단 압력, 온도 등을 측정하였다. 베인 팽창기 성능 측정 결과 팽창기 회전수가 증가됨에 따라 팽창기 출력 및 효율이 증가하였다. 팽창기 전효율은 500 rpm 회전수 조건에서 6~7%이고, 1000 rpm 에서는 11~12%임을 보였다. 팽창기 전효율이 낮은 원인은 팽창기 체적효율이 낮기 때문인 것으로 분석되었으며, 향후 체적효율을 향상시키기 위해 팽창기 누설을 개선하기 위한 연구가 진행될 예정이다.

Keywords

References

  1. Qiu G.; Liu H; Riffat S, Expanders for micro-CHP systems with organic Rankine cycle, Applied Thermal Engineering, 2011,31,3301-3307. https://doi.org/10.1016/j.applthermaleng.2011.06.008
  2. Quoilin S; Lemort V; Lebrun J. Experimental study and modeling of an Organic Rankine Cycle using scroll expander, Applied Energy, 2010, 87, 1260-1268 https://doi.org/10.1016/j.apenergy.2009.06.026
  3. Lemort V; Quoilin S; Cuevas C; J. Lebrun, 2009, Testing and modeling a scroll expander integrated into an Organic Rankine Cycle, Applied Thermal Engineering, 2009, 29, 3094-3102. https://doi.org/10.1016/j.applthermaleng.2009.04.013
  4. T. Saitoh; N. Yamada, S.I; Wakashima. Solar Rankine cycle system using scroll expander, Journal of Environment and Engineering 2 (2007) 708-719. https://doi.org/10.1299/jee.2.708
  5. Liu G; Zhao Y; Li L; Shu P. Simulation and experiment research on wide ranging working process of scroll expander driven by compressed air, Applied Thermal Engineering, 2010, 30, 2073-2079. https://doi.org/10.1016/j.applthermaleng.2010.05.015
  6. Huff H.; Radermacher, R.;Preissner, M., Experimental investigation of a scroll expander in a carbon dioxide air-conditioning system, International Congress of Refrigeration, Washington D.C., Paper no ICRO485, 2003,
  7. Preissner M., Carbon dioxide vapor compression cycle imrovement with focus on scroll expander, Ph.D dissertation, University of Maryland, USA. 2001
  8. Kim HY.; Ahn JM.; Kim HJ.; Cho SO., Performance analysis of vane rotary expander for CO2 cycles, 2009.
  9. Yang B.; Peng X.; He Z., Experimental investigation on the internal working process of a CO2 rotary vane expander, Applied Thermal Engineering 29, 2009, 2289-2296. https://doi.org/10.1016/j.applthermaleng.2008.11.023
  10. Jia X.; Zhang B.; Yang B., Study of rotary vane expander for the transcritical CO2 cycle-part II: theoretical modeling, HVAC&R Research 15, 2009, 689-709. https://doi.org/10.1080/10789669.2009.10390858
  11. Xia C.; Zhang W.; Bu G.; Wang Z.; Shu P., Experimental study on a sliding vane expander in the HFC410A refrigeration system for energy recovery, Applied Thermal Engineering,59, 2013, 559-567. https://doi.org/10.1016/j.applthermaleng.2013.05.050
  12. Qiu G.; Shao Y.; Li J.; Liu H.; Riffat S.B., Experimental investigation of a biomass-fired ORC-based micro-CHP for domestic applications, Fuel, 96, 2012, 374-382. https://doi.org/10.1016/j.fuel.2012.01.028