• Title/Summary/Keyword: Micro organic Rankine cycle

Search Result 7, Processing Time 0.024 seconds

Analysis of Design and Part Load Performance of Micro Gas Turbine/Organic Rankine Cycle Combined Systems

  • Lee, Joon-Hee;Kim, Tong-Seop
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1502-1513
    • /
    • 2006
  • This study analyzes the design and part load performance of a power generation system combining a micro gas turbine (MGT) and an organic Rankine cycle (ORC). Design performances of cycles adopting several different organic fluids are analyzed and compared with performance of the steam based cycle. All of the organic fluids recover greater MGT exhaust heat than the steam cycle (much lower stack temperature), but their bottoming cycle efficiencies are lower. R123 provides higher combined cycle efficiency than steam does. The efficiencies of the combined cycle with organic fluids are maximized when the turbine exhaust heat of the MGT is fully recovered at the MGT recuperator, whereas the efficiency of the combined cycle with steam shows an almost reverse trend. Since organic fluids have much higher density than steam, they allow more compact systems. The efficiency of the combined cycle, based on a MGT with 30 percent efficiency, can reach almost 40 percent. hlso, the part load operation of the combined system is analyzed. Two representative power control methods are considered and their performances are compared. The variable speed control of the MGT exhibits far better combined cycle part load efficiency than the fuel only control despite slightly lower bottoming cycle performance.

Design Performance Analysis of Micro Gas Turbine-Organic Rankine Cycle Combined System (마이크로 가스터빈과 유기매체 랜킨사이클을 결합한 복합시스템의 설계 성능해석)

  • Lee Joon Hee;Kim Tong Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.536-543
    • /
    • 2005
  • This study analyzes the design performance of a combined system of a recuperated cycle micro gas turbine (MGT) and a bottoming organic Rankine cycle (ORC) adopting refrigerant (R123) as a working fluid. In contrast to the steam bottoming Rankine cycle, the ORC optimizes the combined system efficiency at a higher evaporating pressure. The ORC recovers much greater MGT exhaust heat than the steam Rankine cycle (much lower stack temperature), resulting in a greater bottoming cycle power and thus a higher combined system efficiency. The optimum MGT pressure ratio of the combined system is very close to the optimum pressure ratio of the MGT itself. The ORC's power amounts to about $25\%$ of MGT power. For the MGT turbine inlet temperature of $950^{\circ}C$ or higher, the combined system efficiency, based on shaft power, can be higher than $45\%$.

Experimental Study of Vane Expander Prototype Applied to Micro Organic Rankine Cycle (초소형 유기랭킨사이클 적용 프로토 타입 베인 팽창기에 관한 실험적 연구)

  • Shin, Dong Gil;Kim, Young Min
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.230-235
    • /
    • 2014
  • In this study, performances of the vane expander protype for micro organic Rankine cycle with refrigerant R134a as a working fluid have been analyzed. While operating organic Rankine cycle for analysing expander efficiencies such as overall efficiencies, volumetric efficiencies and mechanical efficiencies under $110^{\circ}C$ of expander inlet temperature, the power of the expander, inlet temperature of expander, inlet pressure of expander and the flow rate of the working fluid(refrigerant R134a) have been measured while varying the rotational speed of the expander. It was found that the more the expander revolution speed is high, the more the expander power, overall efficiencies and volumetric efficiencies are higher. In case of 500 rpm of rotational speed, overall efficiencies are 6~7% and in case of 1000 rpm, overall efficiencies are 11~12%. We have found that low volumetric efficiencies result in poor overall efficiencies.

Analysis of Efficiencies of Scroll Expander for Micro Scale Organic Rankine cycle (초소형 유기랭킨사이클용 스크롤팽창기 효율 특성 분석)

  • Shin, Dong Gil
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.398-401
    • /
    • 2012
  • In this Study, efficiencies of the scroll expander under development for organic Rankine cycle using engine waste heat of vehicle have been analyzed and compared with the commercial scroll expander. While operating organic Rankine cycle for analysing expander efficiencies, power of expander, inlet temperature of expander, inlet pressure of expander and the flow rate of the working fluid(refrigerant R134a) have been measured. Overall efficiency of the expander has been shown the very low level compared with the overall efficiency of the commercial expander. Especially, because the low volumetric efficiency has much effect on overall efficiency, the working fluid leakage trouble of expander has to be solved surely for improvement of the expander overall efficiency.

Operating Characteristics of a Scroll Expander Used in Organic Rankine Cycle (유기랭킨사이클 적용 스크롤 팽창기 성능 특성 연구)

  • Shin, Dong-Gil;Kim, Young-Min;Kim, Chang-Gi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.776-781
    • /
    • 2011
  • The rapid increases in global energy demand and global warming need renewable energy sources such as solar thermal energy, biomass energy and waste heat. A ORC-based micro-CHP system(< 10 kWe) is one of the effective means to use renewable energy and solve energy problems because of its compactness, flexibilities and lower cost compared to other systems. The most important core components of the ORC is the expander which has a strong effect on the cycle efficiency. In the range of power output from 1 to 10 kW, the scroll expander is a good choice due to its performance and reliability. In this study, we have carried out an experimental study on an ORC equipped with oil-free scroll expander working with refrigerant R134a. We have measured power output and thermal efficiencies of the ORC and analyzed correlation between volumetric efficiencies of the expander and thermal efficiencies of the ORC.

Feasibility of Combined Heat and Power Plant based on Fuel Cells using Biogas from Macroalgal Biomass (거대조류 바이오매스로부터 생산된 바이오가스를 사용하는 연료전지 기반 열병합발전의 타당성 검토)

  • Liu, Jay
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.357-364
    • /
    • 2018
  • Studies on the production of biogas from third generation biomass, such as micro- and macroalgae, have been conducted through experiments of various scales. In this paper, we investigated the feasibility of commercialization of integrated combined heat and power (CHP) production using biogas derived from macroalgae, i.e., seaweed biomass. For this purpose, an integrated CHP plant of industrial scale, consisting of solid oxide fuel cells, gas turbine and organic Rankine cycle, was designed and simulated using a commercial process simulator. The cost of each equipment in the plant was estimated through the calculated heat and mass balances from simulation and then the techno-economic analysis was performed. The designed integrated CHP process produces 68.4 MW of power using $36ton\;h^{-1}$ of biogas from $62.5ton\;h^{-1}$ (dry basis) of brown algae. Based on these results, various scenarios were evaluated economically and the levelized electricity cost (LEC) was calculated. When the lifetime of SOFC is 5 years and its stack price is $$225kW^{-1}$, the LEC was 12.26 ¢ $kWh^{-1}$, which is comparable to the conventional fixed power generation.