• Title/Summary/Keyword: 엔진 폐열

Search Result 42, Processing Time 0.025 seconds

Development of Simulation Model for Waste Heat Recovery from Automotive Engine Exhaust Using Thermoelectric Generator (열전소자를 이용한 자동차 엔진 배기 폐열 회수 시스템 해석 모델 개발)

  • Kim, Ki-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1022-1026
    • /
    • 2013
  • Recently, the waste heat recovery technique using thermoelectric generator (TEG) in automotive engine has emerged to improve thermal efficiency in commercial vehicle. It is not difficult to recognize the numerous attempts that have been made to develop the TEG simulation model, but it is hard to find the model in conjunction with a particular heat engine system. In this study, 1-D commercial software AMESim was used to develop a computational model that can assess waste heat recovery from a diesel engine exhaust using TEG. The developed TEG simulation model can be used for evaluating the TEG performance of various types of TE module, and the diesel engine model can simulate any type of on and off-road diesel engines. The simulation results demonstrated that approximately 544.75W could be recovered from the engine exhaust and 40.4W could be directly converted into electricity using one TE module. The models developed in this study can be easily coupled with each other in the same computational program; thus, the models are expected to provide a viable tool for developing and optimizing a TEG waste heat recovery system in an automotive diesel engine.

Prediction of GHP Performance Using Cycle Analysis (사이클 해석을 통한 GHP 성능 예측)

  • Cha, Woo Ho;Choi, Song;Chung, Baik Young;Kim, Byung Soon;Jeon, Si Moon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • In this paper a prediction method of GHP performance is proposed for increasing design accuracy. Two compressors with different capacity and 2311cc gas engine are used for prediction and the target capacity of GHP is 25HP. For predicting GHP performance at first the operation points are randomly selected and then as compared with compressor performance date and heat exchanger characteristic, more accurate operating points are decided through recursive calculation. Lastly engine performance date is used for calculating gas consumption volume. Predicting heating mode performance of GHP, evaporator is separated to the two section of absorbing heat in outdoor air and in engine. From the experimental results, it was found that the simulation model is good for the predicting GHP efficiency and the difference of predicted and measured efficiency is less than 5%.

Optimization of Design Pressure Ratio of Positive Displacement Expander for Engine Waste Heat Recovery of Vehicle (자동차 엔진 폐열 회수 동력시스템에서 용적형 팽창기의 설계 팽창비 최적화)

  • Kim, Young Min;Shin, Dong Gil;Kim, Chang Gi;Woo, Se Jong;Choi, Byung Chul
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.411-418
    • /
    • 2012
  • The effect of built-in volume ratio of expander on the performance of a two-loop Rankine cycle system for engine waste heat recovery of vehicle has been investigated. In the case of positive displacement expander in the various operating condition of the vehicle, it can operate in both under-expansion and over-expansion conditions. Therefore, the analysis of off-design performance for the expander is very important. Furthermore, the volume and weight of the expander as well as the efficiency must be considered in the optimization of the expander. This study shows that the built-in volume ratio of expander causing under-expansion at a target condition is more desirable considering the off-design performance and size of the expander, based on the simple modeling of off-design operation of the expander.

Performance Simulation of Motorcycle Engine Exhaust Heat Recovery System using Thermoelectric Element (열전소자를 이용한 모터사이클용 엔진 배기 폐열 회수 시스템 성능 해석)

  • Lee, Moo-Yeon;Kim, Kihyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.695-701
    • /
    • 2018
  • Research into exhaust heat recovery has been actively carried out to improve the thermal efficiency of internal combustion engines. In this study, the performance of thermoelectric generation from exhaust heat recovery for motorcycle engines was analyzed by 1-D thermo-fluid simulation. GT-SUITE, which was developed by Gamma Tech., was used for the simulation of the internal combustion engine and thermoelectric generation system. The basic performance of the engine was analyzed in the range of engine speed of 1000~7000 rpm and engine load of 0~100%. The ratio of exhaust heat energy to fuel chemical energy was found to be about 40~60%. A combined simulation of the engine model and thermoelectric generation model was carried out to analyze the voltage, current and power generated by the thermoelectric material. The generation characteristics of the thermoelectric material was dominantly affected by the exhaust gas temperature. The maximum generated power of the current thermoelectric generation system was found to be about 2.2% of the total exhaust heat energy. The design optimization of the thermoelectric generation system will be carried out to maximize its power generation and economic feasibility.

Change in Engine Exhaust Characteristics Due to Automotive Waste Heat Recovery (엔진 배기 폐열회수로 인한 배기 특성 변화)

  • Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4723-4728
    • /
    • 2014
  • In this study, a thermoelectric module (TEM) and a diesel engine were modeled using 1-D commercial software AMESim, and the performance of the TEM was evaluated when the engine was operated under the NEDC driving cycle. The goal of TEM modeling was to investigate not only the waste heat recovery (WHR) rate and energy converting efficiency, but also the heat transfer rate by taking the materials characteristics into account. In addition, a diesel oxidation catalyst (DOC) was designed, and it was found that the waste heat recovery with TEM affects the activation of DOC and alters engine exhaust composition. The simulation indicated that the WHR using TEM is beneficial for decreasing the fuel consumption of vehicles, but the reduction in the exhaust temperature affects the activation of DOC, resulting in an approximately 14% increase in CO and HC emissions. Therefore, the effect of waste heat recovery on the automotive emission characteristics must be considered in the development of automotive engine WHR systems.

Experimental Research on an Organic Rankine Cycle Using Engine Exhaust Gas (엔진 배기열 이용 유기랭킨사이클에 대한 실험적 연구)

  • Shin, Dong Gil
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.393-397
    • /
    • 2012
  • In this study, an organic Rankine cycle(ORC) for gas engine waste heat recovery for industry has been constructed and a performance analysis test has been carried out. Shell & tube style heat exchanger has been equipped on an engine exhaust manifold in order to absorb heat of engine exhaust gas into the working fluid(refrigerant R134a). Under 60 kW of engine power output, about 63 kW of engine exhaust gas heat was discharged and the proportion of heat recovered was 68~73% while 43~46 kW of heat was absorbed into working fluid. Consequently rated power output of ORC was 4.6 kW while the ratio of rated power output to engine exhaust gas heat was 7.3%.

A Simulation Study for Selecting Optimum Position of a Superheater in a Waste Heat Recovery System Integrated with a Large Gasoline Engine (대형 가솔린 엔진의 폐열 회수 장치인 슈퍼히터의 최적 위치선정을 위한 시뮬레이션 연구)

  • Kim, Se Lin;Choi, Kyung Wook;Lee, Ki Hyung;Kim, Ki Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.69-73
    • /
    • 2016
  • Recently, automotive engineers have paid much attention to waste heat recovery technology as a possible means to improve the thermal efficiency of an automotive engine. A large displacement gasoline engine is generally a V-type engine. It is not cost effective to install two superheaters at each exhaust manifold for the heat recovery purposes. A single superheater could be installed as close to the exhaust manifold as possible for the higher recovery efficiency; however, only half of exhaust gas can be used for heat recovery. On the contrary, the exhaust temperature is decreased for the case where the superheater is installed at a junction of two exhaust tail pipes. With the fact in mind, the optimum position of a single superheater was investigated using simulation models developed from a commercial software package (i.e. AMESim). It was found that installing the superheater near the exhaust manifold could recover 3.8 kW more from the engine exhaust despite utilizing only half of the exhaust mass flow. Based on this result, the optimum layout of an automotive waste heat recovery system was developed and proposed in this paper.

분산형 발전시스템의 기술개발 동향 - 소형 스털링 엔진 발전시스템 기술개발 동향

  • Go, Jun-Seok;Park, Seong-Je;Kim, Hyo-Bong;Hong, Yong-Ju
    • 기계와재료
    • /
    • v.26 no.1
    • /
    • pp.28-36
    • /
    • 2014
  • 소형 스털링엔진 발전시스템은 전력을 생산하기 위해 스털링엔진을 적용하는 시스템으로, 천연가스가 풍부한 북유럽 국가들을 중심으로 난방, 온수와 전기에너지를 동시에 공급할 수 있는 가정용 소형 열병합 발전시스템으로 각광받고 있다. 외연기관인 스털링엔진은 연료의 종류에 제한을 받지 않기 때문에, 태양열, 폐열, 천연가스 등의 다양한 열원을 이용한 발전시스템에 적용이 가능하다. 수 kW급의 스털링엔진을 적용한 소형 열병합 발전시스템의 기술개발 동향을 소개하고자 한다.

  • PDF

An Experimental Study on LTD Stirling Engine (MM-7) for the Development of TM Electric Conversion System (TM발전변환기 개발을 위한 저온도차 스털링엔진(MM-7)의 성능실측 연구)

  • Kim, Yeongmin;Chen, Kuan;Chun, Wongee
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.9-14
    • /
    • 2016
  • This study has been carried out to develop TM (Thermal to Mechanical) conversion systems for electric power generation using one of the Low Temperature Differential (LTD) Stirling engines called MM-7 capable of harnessing low temperature waste heat whose temperature is only $20{\sim}30^{\circ}C$ above the ambient. Measurements were made on the torque and rpm for a number of temperature differentials between the engine hot and cold ends, which could be effectively applied in developing the most suitable configuration for the high performance TM (Thermal to Mechanical) conversion system.

Performance Analysis of Two-Loop Rankine Cycle for Engine Waste Heat Recovery (엔진 폐열 회수를 위한 이중 회로 랭킨 사이클 성능 해석)

  • Kim, Young Min;Shin, Dong Gil;Kim, Chang Gi;Woo, Se Jong;Choi, Byung Chul
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.402-410
    • /
    • 2012
  • A two-loop Rankine cycle for engine waste heat recovery of gasoline vehicle has been investigated. Water-steam cycle as a high-temperature (HT) loop for exhaust gas heat recovery and R-134a cycle as a low-temperature (LT) loop for both heat recovery of the engine coolant and the residual heat from the HT loop were considered. Energy and exergy analysis was performed to investigate the performance of the system. Because two volumetric expanders are used for the HT and LT loop, the sizes of two expanders are very important for the optimization of the system. The effects of pressure ratio of the HT loop, considering the size of the HT expander, and the condensation temperature of LT loop on the performance of the system at a target engine condition were investigated. This study shows that about 20% of additional power from the engine waste heat recovery can be obtained at the target engine condition.