DOI QR코드

DOI QR Code

Characteristics of Anaerobic Acid Fermentation with Food waste leachate by Reactor Type of Retention Time for Landfill Site Injection

매립지 주입을 위한 음폐수 산발효 시 반응기 형태와 체류시간에 따른 특성

  • Moon, Kwangseok (Graduate School of energy and Environment, Seoul National University of Technology & Science) ;
  • Kim, Jaehyung (Graduate School of energy and Environment, Seoul National University of Technology & Science) ;
  • Koo, Hyemin (Graduate School of energy and Environment, Seoul National University of Technology & Science) ;
  • Lim, Junhyuk (Graduate School of energy and Environment, Seoul National University of Technology & Science) ;
  • Kim, Nakjoo (Graduate School of energy and Environment, Seoul National University of Technology & Science) ;
  • Chang, Wonseok (District Heating Technology Research Institute, Korea District Heating Corp.) ;
  • Pak, Daewon (Graduate School of energy and Environment, Seoul National University of Technology & Science)
  • 문광석 (서울과학기술대학교 에너지환경대학원) ;
  • 김재형 (서울과학기술대학교 에너지환경대학원) ;
  • 구혜민 (서울과학기술대학교 에너지환경대학원) ;
  • 임준혁 (서울과학기술대학교 에너지환경대학원) ;
  • 김낙주 (서울과학기술대학교 에너지환경대학원) ;
  • 장원석 (한국지역난방공사 기술연구소) ;
  • 박대원 (서울과학기술대학교 에너지환경대학원)
  • Received : 2014.08.02
  • Accepted : 2014.09.12
  • Published : 2014.09.30

Abstract

In order to increase landfill gas (LFG) production with food waste leachate, this study was confirmed to be acidogenetic conditions for landfill site injection. Thereby, it was conducted for acidogenetic treatments to determine the decrease in viscosity and VFA production. After acidogenesis treatments, solubility of food waste leachate increased approximately 15%, and as a result, UASB and CSTR were similar by reactor type using the change of retention time. Based on the result of the change in viscosity by reactor type, efficiency of UASB showed approximately 11.38% of higher decrease in viscosity as $76.95{\pm}3.27%$ vs. CSTR. Also, VFA production showed the higher increase of 2.01 times (UASB) and 1.76 times (CSTR) respectively at the point of increasing retention time from 3 to 5 days. From the above results, efficiency of UASB in a reactor was relatively higher because large molecular lead to longer retention time than small molecular due to having screen effect in the fixed media.

본 연구에서는 매립가스 증대를 위한 음폐수의 원활한 주입을 위해 혐기성 산발효 전처리를 수행하였으며 이를 통해 점도 감소와 유기산 생산량을 확인하여 매립지 주입을 위한 최적조건을 확인하고자 하였다. 산발효 후 음폐수 가용화율은 약 15% 증가함을 보였고 체류시간의 변화와 반응기형태를 달리 한 결과 큰 차이를 보이지는 않았다. 반응기형태에 따라 점도변화를 확인한 결과 상향류식 반응기에서 $76.95{\pm}3.27%$로 완전혼합반응기에 비해 약 11.38% 높은 점도 저감효율을 보였으며, VFA생산에서는 체류시간을 3일에서 5일로 증가 시 2.01배(상향류식 반응기), 1.76배(완전혼합반응기) 높은 경향을 보였다. 이는 상향류식 반응기의 경우 고정층담체의 스크린 역할로 분자량이 작은 물질에 비해 큰 물질들이 상대적으로 반응기에 체류하는 시간이 길어져 효율이 높은 것으로 사료된다.

Keywords

References

  1. J. A. Turner, "A realizable renewable energy future", Science, 285(30), 1999, 687-689 https://doi.org/10.1126/science.285.5428.687
  2. 산업통상자원부, "제2차 국가에너지기본계획", 2014
  3. 환경부, "폐기물에너지화 종합대책", 2008
  4. E. J. Nyns, A. Gendebien, "Landfill gas: From environment to energy", Wat. Sci. Tech., 27(2), 1993, 253-259
  5. Pohland, F.G., 1975. Sanitary Landfill Stabilization with Leachate Recycling and Residual Treatment. EPA-600/2-75-043. US EPA, Cincinnati, Ohio.
  6. D. R. Reinhart, "Full-scale experiences with leachate recirculating landfills: Case studies", Waste Management and Research, 14, 1996, 347-365 https://doi.org/10.1177/0734242X9601400403
  7. D. R. Reinhart, A. B. Al-Yousfi, "The impact of leachate recirculation on municipal solid waste landfill operating characteristics", Waste Management and Research, 14, 1996, 337-346 https://doi.org/10.1177/0734242X9601400402
  8. D. R. Reinhart, P. T. McCreanor, T. Townsend, "The bioreactor landfill: its status and future", Waste Management and Research, 20, 2002, 172-186 https://doi.org/10.1177/0734242X0202000209
  9. Yuen, S.T.S., 2001. Bioreactor landfills: do they work? In: Geoenvironment 2001: 2nd ANZ Conference on Environmental Geotechnics, Newcastle, Australia, November 2001.
  10. F. G. Pohland, "Leachate recycling as landfill management option", Journal of Environmental Engineering, 106(6), 1980, 1057-1069
  11. Pohland, F.G., 1995. Landfill Bioreactors, Historical Perspective, Fundamental Principles, and New Horizons in Design and Operations. US EPA/600/R-95/146. US Environmental Protection Agency Seminar Publication: Landfill Bioreactor Design and Operation. Wilmington D.E., Washington, September 1995.
  12. D. T. Sponza, O. N. Agdag, "Impact of leachate recirculation and recirculation volume on stabilization of municipal solid wastes in simulated anaerobic bioreactors", Process Biochemistry, 39 (2004), pp. 2157-2165 https://doi.org/10.1016/j.procbio.2003.11.012
  13. I. San, T. T. Onay, "Impact of various leachate recirculation regimes on municipal solid waste degradation", Journal of Hazardous Materials B, 87, 2001, 259-271 https://doi.org/10.1016/S0304-3894(01)00290-4
  14. S. Chugh, W. Clarke, P. Pullammanappallil, et al., "Effect of recirculated leachate volume on MSW degradation", Waste Management and Research, 16(6), 1998, 564-573 https://doi.org/10.1177/0734242X9801600607
  15. 한국환경산업기술원, "폐자원 에너지화 기술동향보고서", 2013
  16. S. K. Behera, D. H. Kim, H. S., Shin, S. K. Cho, S. P. Yoon, H. S. Park, "Enhanced methane recovery by food waste leachate injection into a landfill in Korea", Waste Manag., 31(9-10), 2011, 2126-2132 https://doi.org/10.1016/j.wasman.2011.05.005
  17. W. T. Tsai, "Bioenergy from landfill gas (LFG) in Taiwan, Renewable and sustainable energy reviews, 11(2), 2007, 331-334 https://doi.org/10.1016/j.rser.2005.01.001
  18. M. Warith, "Bioreactor landfills: experimental and field results", Waste Manag., 22(1), 2002, 7-17 https://doi.org/10.1016/S0956-053X(01)00014-9
  19. D. G. Craft, N, C, Blakey, "Codisposal of sewage sludge and domestic waste in landfills", ISWA Proc.,Academic Press, London, UK. 1, 1988, 161-168
  20. S. B. Gulec, T. T. Onay, A, Erdincler, "Determination of the remaining stabilization potential of landfilled solid waste by sludge addition", Water Science and Technology, 42(9), 2000, 269-276
  21. D. H. Kim, S. H. Kim, K. W. Jung, M. S. Kim, H. S. Shin, "Effect of initial pH independent of operational pH on hydrogen fermentation of food waste", Bioresour Technol., 2011, 102(18), 8642-8652
  22. APHA, AWWA and WEF : Standard methods for the examination of water and wastewater, 20th ed. Baltimore, American Public Health Association 2, 1998
  23. M. G. Barajas, J. Knobelsdorf, A. Escalas, and R. Mujeriego, "Solubilization and fermentation in a modified VFA-potential method", Environmental Engineering Science, 20(4), 2003, 329-336 https://doi.org/10.1089/109287503322148609
  24. X. Liu, W. Wang, Y. Shi, L. Zheng, X. Gao, W. Qiao, Y. Zhou, "Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate", Waste Manag., 32(11), 2012, 2056-2060 https://doi.org/10.1016/j.wasman.2012.03.003
  25. X. Liu, W. Wang, X. B. Gao, Y. J. Zhou, R. J. Shen, "Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste", Waste Manag., 32, 2012, 249-255 https://doi.org/10.1016/j.wasman.2011.09.027
  26. Z. W. Zhu, M. K. Hsueh, Q. He, "Enhancing biomethanation of municipal waste sludge with grease trap waste as a co-substrate", Renewable energy, 32, 2011, 1802-1807
  27. A. M. Brooksbank, J. W. Latchford, S. M. Mudge, "Degradation and modification of fats, oils and grease by commercial microbial supplements", World J. Microbiol. Biotechnol., 23, 2007, 977-985 https://doi.org/10.1007/s11274-006-9323-1
  28. H. P. Herbert, H, Q, Yu, "Effect of HRT on mesophilic acidogenesis of dairy wastewater", Journal of environmental engineering, 126(12) 2000, 1145-2000 https://doi.org/10.1061/(ASCE)0733-9372(2000)126:12(1145)
  29. P. Boonsawang, A. Rerngnarong, C. Tongurai, S. Chaiprapat, "Effect of pH, OLR, and HRT on performance of acidogenic and methanogenic reactors for treatment of biodiesel wastewater", Desalination and water treatment, 52, 2014, 1-11 https://doi.org/10.1080/19443994.2013.808406
  30. K. S. Min, A. R. Khan, M. K. Kwon, Y. J. Jung, Z. Yun and Y. Kiso, "Acidogenic fermentation of blended food-waste in combination with primary sludge for the production of volatile fatty acids", Journal of Chemical Technology and Biotechnology, 80(8), 2005, 909-915 https://doi.org/10.1002/jctb.1261