• Title/Summary/Keyword: 산발효

Search Result 66, Processing Time 0.02 seconds

The Recovery of Carbon Source from Municipal Primary Sludge using Pilot Scale Elutriated Acidogenic Fermentation (Pilot scale 세정산발효를 이용한 하수 일차슬러지의 산발효)

  • Kwon, Kooho;Kim, Siwon;Jung, Yongjun;Min, Kyungsok
    • Journal of Wetlands Research
    • /
    • v.15 no.2
    • /
    • pp.165-170
    • /
    • 2013
  • Pilot scale study was carried out to produce Volatile Fatty Acids with primary sludge from municipal wastewater treatment plant. An acid fermenter was operated at pH 9, $35^{\circ}C$, SRT of 3.5-4.25d, using a final effluent as elutriating water(Mode-I) and pH 9, SRT 5d, temperature of $35^{\circ}C$(Mode-II), $55^{\circ}C$(Mode-III), using a primarily treated water as elutriating water. Although solubilization rate was enhanced with the increase of temperature, the VFAs production rate was decreased. The VS reduction was shown approximately 56%, and the sludge volume reduction was 93%. The optimal conditions for solubilization was obtained at pH 9, $35^{\circ}C$ and SRT of 5d.

A Study on Biogas Yield According to Food Waste Leachate Acid Fermentation Conditions (음폐수 산발효 조건에 따른 바이오가스 생산량에 관한 연구)

  • Moon, Kwangseok;Pak, Daewon;Kim, Jaehyung
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.11-17
    • /
    • 2015
  • This study performed acid fermentation pre-treatment to improve production efficiency of methane that is produced as a product in case of anaerobic fermentation by using food waste leachate, and attempted to confirm the acid fermentation optimum through the BMP test by using pre-treated food waste leachate to increase the yield of methane. As a result of the BMP experiment by using acid fermented food waste leachate, the highest yield of methane of 0.220 L/g VS was confirmed in the HRT three-day condition, and in the initial BMP test by pH, pH 6 was 19,920 mg/L that the highest VFA and acetic acid/TVFA(76.2%) were shown. At this time, it was confirmed that the yield of methane was mostly within 10 days that was reduced to around one-third compared to the general methane fermentation (within 30 days). As the yield of methane was 0.294 L/g VS, it showed a high efficiency of around 1.3 times compared to the control group.

Enhanced acidogenic fermentation of food waste (II) : Effect of controlling dilution rate (음식물쓰레기를 처리하는 산발효조의 효율 향상 연구(II) : 희석율 변화의 효과)

  • Shin, Hang-Sik;Han, Sun-Kee;Song, Young-Chae;Lee, Chae-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.3
    • /
    • pp.118-123
    • /
    • 2000
  • Food waste results in various problems such as decay, odors and leachate in collection, transportation and landfill due to the high volatile solids and moisture content. Acidogenic fermentation of food waste is influenced by the environmental conditions such as pH, retention time, etc. Each component of food waste is degraded under the different environmental conditions. Starch, cellulose and protein have their own optimum pHs and retention times for degradation. The degradation of starch increases at low pH, cellulose with increasing retention time, and protein with increasing retention time as well as approaching neutral pH. These mean that the degradation of food waste can be enhanced by adjusting the environmental conditions of acidogenic fermentation. The efficiency of acidification increased from 71.2 to 81.1% by controlling dilution(D) rate from 3.0 to $1.0d^{-1}$ depending on the state of the fermentation. The main component of the acidified product was shifted from butyric to acetic acid, indicating that the increase of acidification was mainly caused by the enhanced degradation of vegetables and meats.

  • PDF

Performance comparison of acidogenic fermentation and hydrogen fermentation using bench-scale leaching-bed reactors for food waste (벤치스케일 침출상 반응조를 이용한 음식폐기물 처리 시 신발효 및 수소발효의 거동특성 비교)

  • Han, Sun-Ki
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.3
    • /
    • pp.97-105
    • /
    • 2007
  • This study was conducted to compare the performances of acidogenic fermentation and hydrogen fermentation using bench-scale leaching-bed reactors for organic solid waste. Acidogenic fermenters were operated with dilution rates (D) of 2.0, 3.0 and $4.0d^{-1}$ after employing anaerobic sludge and hydrogen fermenters were operated with D of 2.0, 4.0 and $6.0d^{-1}$ after employing heat-treated anaerobic sludge. The highest chemical oxygen demand (COD) conversion efficiency (56.2%) was obtained in acidogenic fermentation with D of $3.0d^{-1}$. Only volatile fatty acid (VFA) was produced as a metabolite. On the other hand, hydrogen fermentation did not show higher COD conversion efficiency (49.3%) than acidogenic fermentation, but it produced hydrogen gas (5.1% of total COD) which was a clean and environmentally friendly fuel with a high energy yield. Therefore, either acidogenic fermentation or hydrogen fermentation could be applied to organic solid waste depending on the purpose of treatment, which could maximize the economics of anaerobic treatment.

  • PDF

Thermophilic Anaerobic Acid Fermentation of Food Wastes after NaOH Addition (NaOH 첨가에 따른 음식물찌꺼기 고온 혐기성 산발효)

  • Ahn, Chul-Woo;Lee, Chul-Seung;Seo, Jong-Hwan;Park, Jin-Sik;Moon, Choo-Yeon;Jang, Seong-Ho;Kim, Soo-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.220-227
    • /
    • 2004
  • This study showed that thermophilic anaerobic acid fermentation of food wastes had an enhanced hydrolysis capability and improvement of acidification efficiency. Influence of pH on the anaerobic hydrolysis and acidogenesis was investigated to determine the proper alkalinity in the thermophilic fermentation of food wastes. The results of putting NaOH as alkali to evaluate hydrolysis and acid fermentation efficiency In acid fermentation process of food wastes showed that the food wastes pretreated with 0.05 g NaOH/g TS had the maximum 12,600 mg/L of VFAs concentration during HRT 3 days in $55^{\circ}C$ thermophilic condition and the maximum 9,700 mg/L of VFAs concentration during HRT 5 days in $35^{\circ}C$ mesophilic condition. The accomplishment of high VFAs concentration resulted from that the main component of food wastes such as cellulose, lignin and etc. is performed active chemical decomposition by alkali in thermophilic condition. The major components of VFAs produced from the thermophilic acid fermentation process of food wastes were the short chain fatty acids such as acetic acid, butyric acid, and propionic acid.

Acidogenesis of Lipids-Containing Wastewater in Anaerobic Sequencing Batch Reactor (혐기성 연속 회분식 반응조를 이용한 지질 함유 폐수의 산발효 특성)

  • Kim, Sang-Hyoun;Shin, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1075-1080
    • /
    • 2009
  • The partial lipid degradation with the saturation of double-bond at the acidogenesis stage is known to help subsequent methanogenesis during anaerobic digestion. Acidogenic reactions in an anaerobic sequencing batch reactor (ASBR) and a continuously stirred tank reactor (CSTR) were carried out to compare their performances. A mixture of two unsaturated (oleate and linoleate) and two saturated (palmitate and stearate) long-chain fatty acids (LCFAs) was used as a model substrate. Biomass retention in the ASBR contributed to the enhanced performance at hydraulic retention time (HRT) below 15 hr. Biomass retention in the ASBR contributed to the enhanced performance compared to CSTR even at shorter HRT. ASBR would be a proper reactor configuration for the acidogenesis of lipid-containing wastewater.

유기물부하에 따른 음식물지꺼기의 산발효

  • Jang, Seong-Ho;An, Cheol-U;Park, Jin-Sik;Mun, Chu-Yeon
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2006.05a
    • /
    • pp.355-357
    • /
    • 2006
  • 본 연구에서는 산생성효율의 최적 운전인자 도출을 위하여 중온 및 고온혐기성산발효공정에서의 유기물부하에 따른 산발효 효율을 비교 검토하였으며, 다음과 같은 결론을 얻었다. 유기물 부하별로 고온과 중온 조건에서 실험을 진행했을 때 VFA생성과 pH변화를 비교했을 때, 고온 조건이 중온조건보다 더 높은 부하율에서 운전이 가능한 것으로 나타났으며, 생성되는 VFA의 농도도 더 높은 것으로 나타났으며, pH의 변화는 고온 조건에서 4.8$\sim$6.2, 중온 조건에서 5.8$\sim$6.7로 고온에서 중온보다 pH가 낮게 나타났다. 고온과 중온에서 유기물 부하별로 산발효시 생성된 유기산의 구성성분을 비교했을 때, 고온에서 생성된 유기산이 중온보다 acetic acid의 비율이 높은 것으로 나타났다. 음식물찌꺼기 고온 산발효액의 성상에서 $SCOD_{Cr}$/TKN, $SCOD_{Cr}$/T-P이 각각 18.9, 73.4로 나타나 하수처리장에서 저부하 유기물 유입시에 탄소원으로 충분히 활용 가능한 것으로 판단된다.

  • PDF

음식물지꺼기 고온산발효산물과 하수슬러지의 혼합처리

  • Jang, Seong-Ho;An, Cheol-U;Park, Jin-Sik;Mun, Chu-Yeon
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2006.05a
    • /
    • pp.351-354
    • /
    • 2006
  • 본 연구에서는 산발효산물과 하수슬러지의 혼합소화를 위한 적정 혼합비를 도출을 위하여 음식물찌꺼기 고온 산발효산물과 하수슬러지의 생분해 특성과 적정혼합비를 도출하고자 수행한 결과 음식물찌꺼기 고온 산발효액과 하수슬러지를 혼합비별로 회분식 혼합소화 실험을 실시 한 결과 혼합비 1:1에서 385ml CH$_4$/g VS$_{added}$로 가장 높은 메탄발생량을 나타내었다. 이러한 결과는 음식물찌꺼기와 하수슬러지를 1:1로 동일하게 혼합하여 비교 소화실험을 실시했을 때 의 293m1 CH$_4$/g VS$_{added}$와 비교하여 상대적으로 높은 메 탄발생량을 나타내었다.

  • PDF

Effect of waste components on performance of acidogenic fermenter (음식물쓰레기의 구성성분에 따른 산발효조의 거동특성)

  • Han, Sun-Kee;Shin, Hang-Sik;Kim, Sang-Hyoun;Kim, Hyun-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.2
    • /
    • pp.65-70
    • /
    • 2002
  • The previous studies showed that rumen microorganisms had an enhanced waste-degrading capability and controlling the dilution rate was very effective in improving acidification efficiency. Generally the composition of food waste has a small deviation value, but one of the waste components (grains, vegetables or meats) can be increased dramatically depending on a seasonal variation. Thus, it is important to evaluate the efficiency of acidogenic fermentation in this case. Each component was spiked to be 80% of the total waste in R1 (grains), R2(vegetables), and R3 (meats). In Rl, rapid degradation occurred during the initial two days. R2 showed similar performance to that of general food waste. In R3, degradation retarded in the initial stage and then increased after controlling the dilution rate. The acidification efficiencies of the reactors were 88.7 (R1), 73.5 (R2), and 62.1% (R3), respectively. Therefore, the fermentation efficiency was kept over 62% regardless of waste components, indicating that it was stable to acidify food waste by employing rumen microorganisms and controlling the dilution rate.

  • PDF