• Title/Summary/Keyword: 음폐수

Search Result 61, Processing Time 0.026 seconds

Comparison of Anaerobic Digestion for food wastewater and food waste by HADS Pilot Plant (HADS Pilot Plant를 이용한 음폐수와 음식물쓰레기의 혐기성 소화 비교)

  • Ju, Donghun;Lee, Jungmin;Park, Seongbum;Sung, Hyunje
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.245-245
    • /
    • 2010
  • 우리나라 생활폐기물 중 음식물쓰레기는 가장 많은 부분을 차지하고 있다. 또한, 음식물쓰레기에서 발생되는 음폐수의 발생량은 8,926톤/일에 달하고 있지만, 이 중 극히 일부만이 하수처리장 등에서 병합 처리되고 있고 대부분은 해양 투기되고 있는 실정이다. 이에 본 연구에서는 독일 GBU사로부터 중온/습식/이상 혐기성 소화 기술을 도입하여 HADS Pilot Plant를 설치하였고, 2008년 3월부터 국내 음폐수 및 음식물쓰레기에 적합한 최적의 운전기술을 확보하기 위한 Pilot Test를 실시하였다. 본 실험에 사용된 HADS Pilot Plant는 산발효조($6m^3$), 메탄발효조($50m^3$), 안정화조/가스저장조($40m^3$)그리고 가스 소각기로 구성되어 있다. 그리고 적용 음폐수 및 음식물쓰레기는 경기도 Y군에 위치한 사료화 시설에 반입되는 것을 이용하였는데 음폐수는 평균 TS 13.5%, VS 80%, pH $3.7{\pm}0.2$의 성상을 나타내었다. 이를 이용해 계단식으로 유기물 부하를 증가시키면서 $4kgVS/m^3/d$까지 적용하며 중온 상태에서 혐기성 소화를 실시한 결과, $0.8Nm^3/kgVS_{rem}/d$의 바이오가스 회수 및 85%의 VS 감량이 가능함을 확인하였다. 그리고 음식물쓰레기는 음폐수와 달리 1차 파쇄/선별기 및 배관상에 설치되는 2차 미세파쇄/선별기를 통한 전처리를 실시하였고, 1차 파쇄/선별 후 평균적으로 TS가 17.4%, VS는 81%, pH는 $3.85{\pm}0.2$의 성상을 나타내는 음식물쓰레기를 2차 미세파쇄/선별기를 거쳐 Pilot Plant의 산발효조에 투입하여 중온상태에서 혐기성 소화를 실시하였다. 음폐수 적용시와 마찬가지로 계단식으로 유기물 부하를 증량하면서 $4kgVS/m^3/d$까지 적용하여 운전하였고, 그 결과 약 $0.9{\sim}1.2Nm^3/kgVS_{rem}/d$의 바이오가스 회수와 85~87%의 VS 감량 효율을 확인하였다. 음폐수와 음식물쓰레기의 혐기성 소화 실험 결과, 제거된 VS량을 기준으로 보았을 때, 음식물쓰레기에서 더 많은 바이오가스 발생하였는데 이는 음식물쓰레기에 존재하는 고형물이 미생물들의 서식 공간으로 활용됨에 따라 혐기성 소화 과정에서 일어나는 혼합 발효 및 공영양 대사가 음폐수 대비 좀 더 수월하게 일어날 수 있게 된 데에 따른 결과라고 생각된다. 당사의 HADS Pilot Plant test에서는 계단식의 순차적인 유기물 부하 증량과 총VFA/총 알카리도 비율을 0.3~0.4 수준이하로 유지하며 운전함에 따라 음폐수와 음식물 모두에서 안정적으로 $4kgVS/m^3/d$까지의 유기물 부하 적용이 가능하였다. 또한, 생산된 바이오가스 내 메탄의 함량은 60~65%를 유지하였으며, 메탄발효조의 pH는 별도의 조절이 없이도 운전기간 동안 평균 7.8~7.9 수준을 유지하였다. 이처럼 pH 3.7~3.8의 음폐수 또는 음식물쓰레기의 투입에도 안정적인 완충능력을 보여준 것은 소화조 내에서 기질로부터 분해되어져 나오는 암모니아와 이산화탄소가 강력한 버퍼 시스템을 구축하고 있음에 따른 결과로 사료된다. 그리고 음폐수와 음식물쓰레기의 경우 모두 85%이상의 높은 VS 제거율을 보여주었는데 이는 당사의 HADS Pilot Plant 소화조의 구조가 내통과 외통으로 구분되어져 있음에 따라 plug flow + CSTR의 특징을 가짐에 따른 결과로 판단된다. 상기한 결과를 바탕으로 향후에는 $5kgVS/m^3/d$ 수준의 유기물 부하 적용운전도 계획하고 있다.

  • PDF

Characteristics of Food Waste Leachate Derived from Feed Supplement- and Compost-Producing Facilities (사료화 및 퇴비화 공정 유래 음폐수의 성상 비교 연구)

  • Shin, Seung Gu;Han, Gyuseong;Bae, Young-shin;Hwang, Seokhwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.3
    • /
    • pp.68-77
    • /
    • 2015
  • This study was conducted to characterize food waste leachate (FWL) and to compare its characteristics according to generation source: feed supplement- and compost-producing facilities. FWL contained high levels of organic compounds such as carbohydrate, protein and lipid. The moisture content of FWL was among the range of conventional wet anaerobic digestion. FWL was acidic (pH of $4.0{\pm}0.3$) and showed high coefficients of variance for specific parameters: carbohydrate, protein, lipid, ethanol, acetic acid and propionic acid. FWL derived from feed supplement-producing facilities showed slightly lower concentrations of most parameters than FWL derived from compost-producers. However, the difference was not significant at 5% significance level according to analysis of variance.

Feasibility Study on the Treatment of Food Waste Leachate in Municipal Wastewater Treatment Facility - Case of P city - (음폐수 공공하수처리시설 연계처리 타당성 평가 - P시 사례 -)

  • Park, Jong-Hun;Kang, Shin-Young;Kim, Sang-Hyoun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.2
    • /
    • pp.41-49
    • /
    • 2016
  • P city government considers to treat a part of food waste leachate in a municipal wastewater treatment plant (MWWTP), as the capacity of an existing combined treatment plant for food waste leachate is lower than the generation of food waste leachate in the city. Furthermore, the combined treatment plant also treats landfill leachate and directly discharges the effluent to the sea, which may result in a potential environmental problem. Therefore, this study examined the feasibility of the addition of food waste leachate and the effluent of the combined treatment facility on the MWWTP. Acceptable addition amount of the food waste streams, increased pollution loading on the MWWTP, and the treatment cost were estimated according to four scenarios. All the scenarios estimated that the MWWTP would receive most of the food waste streams according to the manual of the ministry of environment with little increase of pollution loading.

The Single- and Two-Phase Anaerobic Digestion of Food Waste Effluent (단상 및 이상혐기소화공정을 이용한 음폐수의 바이오에너지화)

  • HwangBo, Jun-Kwon;Seo, Jae-Gun;Yoon, Heui-Chul;Park, Hyeon-Gun;Lee, Bo-Won
    • Land and Housing Review
    • /
    • v.2 no.1
    • /
    • pp.87-92
    • /
    • 2011
  • The anaerobic digestion of food waste effluent through single- and two-phase process was estimated and compared in this study. The treatment efficiencies for total solid(TS), volatile solid(VS), tCOD(total COD) and sCOD(soluble COD) were invariably higher in the single-phase process, which was accounted for by the fact that the treatment efficiency of organic wastes usually showed an inverse relationship with organic loading rate in the anaerobic digestion. In fact, the organic loading rate was lower for single-phase process. The concentration of tCOD were significantly lower in two-phase process but much more biogas was produced, compared to single-phase anaerobic digestion process, which might be explained partly by the relatively higher stability of two-phase process resulting from the separation of acid phase from methane phase.

A Study on the Recycling of Foodwaste Leachate as External Carbon Sources Using Microbubble (마이크로버블을 이용한 음폐수의 외부탄소원으로서의 재활용 가능성 연구)

  • Lim, Ji-Young;Park, Soo-Young;Kim, Jin-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.651-657
    • /
    • 2016
  • The purpose of this research was to examine the possibility on the recycling of foodwaste leachate as external carbon sources using microbubble. The following operating conditions were selected: pressurizing tank 3 bar, circulation flow rate 3.65 LPM, and air flow rate 0.3 LPM with batch type. Microbubble contact time of 18 hours is optimal time to satisfy the recycling of foodwaste leachate as external carbon sources with batch type. HRT 18 hours came up to standard for external carbon sources, except for T-P concentration with continuous type. Coagulants need to be used for removal of dissolved phosphorus concentration by more than 88.5% of the total phosphorus concentration. The VFA was influenced by the organic decomposition rate and the concentration in the aerobic condition. It was considered that the VFA was needed for selection the optimal HRT or the addition of acid fermentation process in order to meet recycling standard of foodwaste leachate.

A Study on Biogas Yield According to Food Waste Leachate Acid Fermentation Conditions (음폐수 산발효 조건에 따른 바이오가스 생산량에 관한 연구)

  • Moon, Kwangseok;Pak, Daewon;Kim, Jaehyung
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.11-17
    • /
    • 2015
  • This study performed acid fermentation pre-treatment to improve production efficiency of methane that is produced as a product in case of anaerobic fermentation by using food waste leachate, and attempted to confirm the acid fermentation optimum through the BMP test by using pre-treated food waste leachate to increase the yield of methane. As a result of the BMP experiment by using acid fermented food waste leachate, the highest yield of methane of 0.220 L/g VS was confirmed in the HRT three-day condition, and in the initial BMP test by pH, pH 6 was 19,920 mg/L that the highest VFA and acetic acid/TVFA(76.2%) were shown. At this time, it was confirmed that the yield of methane was mostly within 10 days that was reduced to around one-third compared to the general methane fermentation (within 30 days). As the yield of methane was 0.294 L/g VS, it showed a high efficiency of around 1.3 times compared to the control group.

Treatment Efficiency Evaluation of Integrated Two-Phase Pilot-Scale Anaerobic Digestion Using Food Waste Leachate (Pilot Scale 일체형 2상 혐기성소화에서의 음폐수 처리효율 평가)

  • Song, Hancheul;Kim, Dongwook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.2
    • /
    • pp.51-58
    • /
    • 2016
  • In the Integrated Two-Phase Anaerobic Digestion (ITPAD) process, acid and methane fermentation take place in one reactor, which has advantages to cope with organic load variation and reduce foot-print required, compensating disadvantages of Conventional Separated Two-Phase Anaerobic Digestion (CSTPAD). In the present work, organic matter degradation efficiency and biogas generation amount and other performance parameters of the ITPAD fed with food waste leachate were analyzed. In addition, feasibility study on the ITPAD method was performed by comparing its digestion efficiency with that of the CSTPAD. Organic matter alteration and biogas generation of the integrated method were examined for approximately 130 days based on the 5ton/day scaled pilot plant. Experiment results revealed that organic matter removal rate was 80% for mean food waste leachate input amount of $4.1m^3/day$. The biogas generation rate was $63.0m^3$ per ton of food waste leachate input, corresponding to the input VS amount of $0.724m^3/kg-VS_{added}$, and methane content of generated biogas was approximately 61.3%. The ITPAD has a comparable or higher organic matter removal efficiency compared to the conventional separated two-phase anaerobic digestion method. Consequently, the ITPAD method has a great need to commercialize a food waste leachate treatment technology against highly concentrated organic waste leachate.

Study on Feasibility of Integrated Two-Phase Anaerobic Digestion Using Foodwaste Water by Reviewing of Operating Efficiency (일체형 2상 혐기성소화 운전효율 검토를 통한 음폐수 처리 타당성에 관한 연구)

  • Song, Hancheul;Kim, Dongwook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.2
    • /
    • pp.59-66
    • /
    • 2016
  • The purpose of this study was to review of technical, economical feasibilities regarding Integrated Two-Phase Anaerobic Digestion(ITPAD) method. In order for that, operation conditions and data with 24tpd capacity of operating ITPAD plant were analyzed. The result showed that VS removal efficiency was 73.7% and total amount of biogas was generated $1,239m^3/day$ on the average that represents $54.4m^3/ton$-input of generation efficiency. ITPAD had advantages in terms of required area and energy for heating which were analyzed 15.9%~47%, 11.6%~17.8% lower respectively compared to Conventional Separated Two-Phase Anaerobic Digestion(CSTPAD) method. Thus, it is considered the ITPAD has comparatively high feasibility to be expanded and commercialized to dispose high concentration organic matter of waste such as food waste and its leachate.

Anaerobic Co-Digestion Characteristics of Food Waste Leachate and Sewage Sludge (BMP test를 통한 음폐수와 하수슬러지의 병합소화 특성 평가)

  • Lee, Suyoung;Yoon, Young-Sam;Kang, Jun-Gu;Kim, Ki-Heon;Shin, Sun Kyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.1
    • /
    • pp.21-29
    • /
    • 2016
  • We mix food waste leachate and sewage sludge by the proportion of 1:9, 3:7 and 5:5. It turns out that they produced 233, 298 and 344 $CH_4{\cdot}mL/g{\cdot}VS$ of methane gas. The result suggests that as the mixing rate of food waste leachate rises, the methane gas productions increases as well. And more methane gas is made when co-digesting sewage sludge and food waste leachate based on the mixing ratio, rather than digesting only sewage sludge alone. Modified Gompertz and Exponential Model describe the BMP test results that show how methane gas are produced from organic waste. According to the test, higher the mixing rate of food waste leachate is, higher the methane gas productions is. The mixing ratio of food waste leachate that produces the largest volume of methane gas is 3:7. Modified Gompertz model and Exponential model describe the test results very well. The correlation values($R^2$) that show how the results of model prediction and experiment are close is 0.92 to 0.98.