DOI QR코드

DOI QR Code

Occurence of Ilmenite on the Ti-bearing Ore Bodies in Bukcheon, Hadong Area

하동군 북천면 지역 함티타늄광체 내 티탄철석의 산출특성

  • Kwak, Ji Young (Department of Earth Environmental Sciences and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Choi, Jin Beom (Department of Earth Environmental Sciences and Research Institute of Natural Sciences, Gyeongsang National University)
  • 곽지영 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 최진범 (경상대학교 지구환경과학과 및 기초과학연구소)
  • Received : 2014.09.05
  • Accepted : 2014.12.04
  • Published : 2014.12.30

Abstract

Study area (Jikjeon-ri) is located in south end of the Hadong anorthositic rocks. And along the south-western boundary, diorite intruded the Hadong anorthosite. Ilmenite ore bodies are extended in both anorthosite and diorite. And their occurrence in the diorite are not studied yet. While no particular textures are found in the ilmenite within the anorthosite, the ilmenite within the diorite shows characteristic exsolution texture, that is, ilmenite phases are separated into rutile and Fe-oxide and the ilmenite and Fe-oxide. MnO composition in ilmenite ratios are 2.14~3.74wt%, it has higher composition in diorite than that in anorthosite. The plagioclase composition display andesine ($An_{28.7-42.9}$) in the diorite and labradorite ($An_{57.1-72.8}$) in the anorthosite in composition. The exsolution of ilmenite has been developed during the cooling of partly melted ilmenite into rutile and Fe-oxides which is related to the intrusion of the diorite.

하동군 북천면 직전리 지역은 하동 회장암체의 최남단부에 위치하고 있으며, 이 회장암체의 남서쪽에서 섬록암이 관입하여 나타난다. 이 지역의 회장암 및 섬록암 내에는 티탄철석 광체가 발달하고 있는데 이 중 섬록암 내의 산상은 기존의 연구에서 보고된 바 없다. 회장암 내 광체에서 산출되는 티탄철석은 단일광물로 산출되는 반면, 섬록암 내 광체에서 산출되는 티탄철석 내에는 티탄철석-산화철, 금홍석-산화철 간의 용리조직이 관찰된다. 티탄철석 내 MnO의 함량은 섬록암체 내 광체에서 2.14~3.74 wt%로 회장암 내 광체에서의 함량보다 높게 나타나며, 사장석은 섬록암체에서 안데신($An_{28.7-42.9}$)의 조성을 보여주고, 회장암에서 라브라도라이트($An_{57.1-72.8}$)의 조성을 보여준다. 섬록암 내 광체에서 산출되는 티탄철석에서 관찰되는 용리조직은 섬록암의 관입으로 공급된 열에 의해 부분 재용융이 일어나고 냉각과정에 티탄철석이 산화철과 금홍석으로 용리된 것으로 사료된다.

Keywords

References

  1. Bourret, W. (1949) Aeromagneric survey of the allard lake district, quebec. Economic Geology, 44, 732-740. https://doi.org/10.2113/gsecongeo.44.8.732
  2. Charler, B., Skar. O., Korneliussen, A., Duchesne, J. and Auwera, J.V. (2007) Ilmenite composition in the Tellnes Fe-Ti deposit, SW Norway: fractional Crystallization, postcumulus evolution and ilmenite-zircon relation. Contributions to Mineralogy and Petrology, 154, 119-134. https://doi.org/10.1007/s00410-007-0186-8
  3. Charlier, B., Namur, O. and Malpas, S. (2010) Origin of the giant Allard Lake ilmenite ore deposit (Canada) by fractional crystallization, multiple magma pulses and mixing. Lithos, 117, 119-134. https://doi.org/10.1016/j.lithos.2010.02.009
  4. Charlier, B., Sakoma, E., Sauve, M., Stanaway, K., Auwera, J.V. and Duchesne, J.C. (2008) The Grader layered intrusion (Havre-Saint-Pierre Anorthosite, Quebec) and genesis of nelsonite and other Fe-Ti-P ores. Lithos, 101, 359-378. https://doi.org/10.1016/j.lithos.2007.08.004
  5. Diot, H., Bolle, O., Lambert, J.-M., Launeau, P. and Duchesne, J.-C. (2002) The Tellnes ilmenite deposit (Rogaland, South Norway): Magnetic and petrofabric evidence for emplacement of a Ti-enriched noritic crystal mush in a fracture zone. Journal of Structural Geology, 25, 481-501.
  6. Fuhrman, M.L. and Lindsley, D.H. (1988) Ternaty-feldspar modeling and thermometry. American mineralogist, 73, 201-215.
  7. Jung, J.S., Kim, J.S., Cho, H.S., Song, C.W., Son, M., Ryoo, C.R., Chi, S.J. and Kim, I.S. (2010) Occurrence and deformation of Fe-Ti ores from the Proterozoic Hadong anorthosites, Korea. Journal of The Petrological Society of Korea, 19, 31-49 (in Korean with English abstract).
  8. Jeong, J.G. (1982) Petrolgic studies on anorthositic rocks in Hadong-Sancheong District, Korea. Journal of The Geological Society of Korea, 18, 83-108 (in Korean with English abstract).
  9. Jeong, J.G., Kim, W.S. and Watkinson, D.H. (1989) Geologic structure of Hadong anorthositic rocks and associated titanium orebody. Journal of The Geological Society of Korea, 25, 98-111 (in Korean with English abstract).
  10. Jeong, J.G., Kim, W.S. and Seo B.M. (1991) Differentiation of the plutonic rocks in Saeogcho-myon, Sancheong-gun: trace element modelling for the magmatic differentiation. Journal of The Mineralogical Society of Korea, 4, 69-89.
  11. Kim, N.J. and Kang, P.C. (1965) Geological map of Korea(Chingyo sheet scale 1:50,000). Geological Survey of Korea.
  12. Kim, S.Y, Seo, J.R., Yang, J.I. and Kim, S.B. (1991) Geology and ore deposits of rare elements in Hadong and Uljin Area, Korea. KIGAM research report, KR-91-2D-1, 78p (in Korean with English abstract).
  13. Kim, Y.H. (2002) Phase Transition Study on Ilmenite under high pressure and temperature. Journal of the Mineralogical Society of Korea, 15, 161-169.
  14. Koh, B.K. (2006) Petrological and geochemical studies of the petrogenesis of the Hadong-Sancheon anorthosite complex. Ph.D. Thesis, Kangwon National University, Kangwon, 170p (in Korean with English abstract).
  15. Koh, S.M. (2010) Occurrences of ilmenite deposits in Hadong-Sancheong Area. Journal of the Mineralogical Society of Korea, 23, 25-37 (in Korean with English abstract).
  16. Kwak, J.Y., Choi, J.B. and Cho, H.G. (2013) 3D Modeling for resources estimation of illmenite deposits Jikdeon-ri, hadong Korea. Journal of the Mineralogical Society of Korea, 26, 285-297 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2013.26.4.285
  17. Kwon, S.T. and Jeong, J.G. (1990) Preliminary Sr-Nd isotope study of the Hadong-Sanchung anorthositic rocks in Korea implication for their origin and for the Precambrian tectonics. Journal of The Geological Society of Korea, 26, 341-349.
  18. Lee, I.G. (2011) Genetic Environments of Ti-bearing Ore Bodies in the Hadong-Sancheong Anorthosite Complexes. Ph.D. Thesis, Chungbuk National University, Chungbuk, 110p (in Korean with English abstract).
  19. Lee, J.M., Jeong, J.M. and Kim, W.S. (1999) The preliminary study on the evolution of Hadong anorthositic rocks and their generic relations with ilmenite-bearing ore bodies, Korea. Journal of The Geological Society of Korea, 35, 321-336 (in Korean with English abstract).
  20. Moon, J.J., Moon, S.W. and Jwa, Y.J. (2012) SHRIMP zircon ages of the dioritic rocks from the Hadong area in the southeastern Yeongnam massif. Fall Conference of the Association of Korean Geoscience Societies, The Geological Society of Korea, 211 (in Korean).
  21. Park, G.H., Kim, D.Y. and Song, Y.S. (2001) Sm-Nd mineral ages of charnockites and ilmenite-bearing anorthositic rocks of Jirisan area and their genetic relationship. Journal of The Petrological Society of Korea, 10, 27-35 (in Korean with English abstract).
  22. Seo, J.R., Park, S.W., Lee, P.G., Oh, M.S. and Lee, B.J. (1992) Study of rare metal mineral resources in the Hadong area. KIGAM research report. KR-92-1C-2, 72p (in Korean with English abstract).
  23. Speczik., S., Wiszniewska, J. and Diedel, R. (1988) Minerals, exsolution features and geochemistry of Fe-Tiores of the Suwałki district (North-East Poland). Mineralium Deposita, 23, 200-210.
  24. Zhang, J., Zhu, Q., Xie, Z., Lei, C. and Li, H. (2013) Morhological changes of panzhihua ilmenite during oxidation. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 44, 897-905. https://doi.org/10.1007/s11663-013-9863-3

Cited by

  1. Feasibility study on the differentiation between engineered and natural nanoparticles based on the elemental ratios 2017, https://doi.org/10.1007/s11814-017-0223-x