• 제목/요약/키워드: 산화철

검색결과 1,100건 처리시간 0.024초

산화철산업의 개발동향 (An update technology trend in iron oxide)

  • 손진군
    • 한국자원리싸이클링학회:학술대회논문집
    • /
    • 한국자원리싸이클링학회 2004년도 13회 산화철워크샵
    • /
    • pp.17-26
    • /
    • 2004
  • 산화철의 국제동향에 대하여 각 지역 간의 수출입동향과 최근에 급속하게 성장하고 있는 중국의 산화철업계 동향에 대하여 소개하였다. 특히 세게 산화철 교역량은 산화철업계의 기술발전과 각 국이 처한 환경에 따라 변화하며, 산화철의 주요용도중 하나인 안료용도의 경우 건축경기에 큰 영향을 받는다. 중국의 산화철업계는 전반적으로 크게 성장한 반면 다국적 기업의 진출에 따른 기술력 향상과 반대급부로 경쟁력 약한 중국내 기업정리 등이 수반되었다. 산화철산업의 발전을 위하여는 타 소재와의 가격경쟁력도 중요하지만 새로운 응용분야의 개척이 필요하다 본 기술자료에서는 최근에 관심이 집중되는 산화철 나노분말에 대하여 신용도 및 특성에 대하여 소개하였다.

  • PDF

酸化鐵産業의 開發動向 (An update technology trend in iron oxide)

  • 손진군
    • 자원리싸이클링
    • /
    • 제13권6호
    • /
    • pp.3-8
    • /
    • 2004
  • 산화철의 국제동향에 대하여 각 지역간의 수출입동향과 최근에 급속하게 성장하고 잇는 중국의 산화철업계 동향에 대하여 소개하였다. 특히 세계 산화철 교역량은 산화철업계의 기술발전과 각국이 처한 환경에 따라 변화하며, 산화철의 주요용도중 하나인 안료용도의 경우 건축경기에 큰 영향을 받는다. 중국의 산화철업계는 전반적으로 크게 성장한 반면 다국적 기업의 진출에 따른 기술력 향상과 반대급부로 경쟁력 약한 중국내 기업정리등이 수반되었다. 산화철산업의 발전을 위하여는 타소재와의 가격경쟁력도 중요하지만 새로운 응용분야의 개척이 필요하다. 본 기술자료에서는 최근에 관심이 집중되는 산화철 나노분말의 신용도 및 특성에 대하여 소개하였다.

산화철산업(酸化鐵産業)의 개발동향(開發動向) (An update technology trend in iron oxide)

  • 손진군
    • 한국자원리싸이클링학회:학술대회논문집
    • /
    • 한국자원리싸이클링학회 2005년도 제13회 산화철워크샵
    • /
    • pp.47-58
    • /
    • 2005
  • 산화철의 국제동향에 대하여 각 지역간의 수출입동향과 최근에 급속하게 성장하고 있는 중국의 산화철업계 동향에 대하여 소개하였다. 특히 세계 산화철 교역량은 산화철업계의 기술발전과 각국이 처한 환경에 따라 변화하며, 산화철의 주요용도중 하나인 안료용도의 경우 건축경기에 큰 영향을 받는다. 중국의 산화철업계는 전반적으로 크게 성장한 반면 다국적 기업의 진출에 따른 기술력 향상과 반대급부로 경쟁력 약한 중국내 기업정리등이 수반되었다. 산화철산업의 발전을 위하여는 타소재와의 가격경쟁력도 중요하지만 새로운 응용분야의개척이 필요하다. 본기술자료에서는 최근에 관심이 집중되는 산화철 나노분말에 대하여 신용도 및 특성에 대하여 소개하였다.

  • PDF

산화철의 품질 안정화 (A Study on th Quality Stabilization of Iron Oxide)

  • 변태봉;한기현;김형석;배우현
    • 자원리싸이클링
    • /
    • 제7권4호
    • /
    • pp.55-63
    • /
    • 1998
  • 냉연공장의 산회수 설비로부터 제조되는 소프트 페라이트용 산화철의 품질편차를 감소시키기 위한 연구로서, 품질편차 원인분석, 산회수 조업조건 및 산화철 성분분석, 그리고 산화철의 품질변화를 조사하고 이로부터 도출된 산화철 품질편차 최소화를 위한 적정 조업 pattern을 확립하였다. 산화철의 품질편차를 감소시키기 위해서는 산화철의 원료가 되는 폐산의 발생, 즉 산세처리 대상재인 강종의 구분과 발생 폐산의 분리저장 및 분리운전이 필요하였다. 폐산의 분리, 운전조업 및 생성 산화철의 분리, 저장으로 $SiO_2$함량 약 80ppm, 편차 $\pm$ 10 ppm 이하의 산화철을 제조할 수 있었다. 추가필터 설치의 운영에 따라 산화철의 품질편차 감소뿐만 아니라 고순도 산화철의 생산도 가능할 것으로 예상되었다.

  • PDF

산화철의 기술개발동향 (An Update Technology Trend in Iron Oxide)

  • 손진군
    • 자원리싸이클링
    • /
    • 제12권6호
    • /
    • pp.3-7
    • /
    • 2003
  • 산화철의 제조에는 기존의 습식화학제조법과 건식화학제조법이 있는데, 모두 환경에 영향을 미치는 화학물질을 대량으로 사용하여 산화철을 제조하는 기술이다. 본 기술보고에서는 환경친화적 제조법으로 스크랩을 원료로 박테리아를 이용하여 산화철을 제조하는 생화학적 기술과 자전고온합성법을 이용하여 산화철을 제조하는 신개념의 산화철제조 기술을 소개하였다.

영가철 및 철환원균을 이용한 2가 산화철 매질에 의한 TCE 제거 연구 - 모델수립 (Trichloroethylene Treatment by Zero-Valent Iron and Ferrous Iron with Iron-Reducing Bacteria - Model Development)

  • 배연욱;김두일;박재우
    • 대한환경공학회지
    • /
    • 제30권11호
    • /
    • pp.1146-1153
    • /
    • 2008
  • 본 연구에서는 지하수 내 투수성 반응벽체(permeable reactive barrier, PRB)의 TCE 처리에 관한 모델링을 수행하여 trichloroethylene (TCE)의 농도, 컬럼의 단위 부피당 철 매질의 질량, 철환원균(iron-reducing bacteria, IRB)의 농도에 대하여 각각의 유기적인 관계를 고찰하였다. 1차원 이송 확산 반응 방정식을 MATLAB을 이용하여 이송, 확산, 그리고 분해 반응 등을 컬럼의 길이, 실험 수행 시간에 따라 모델하였으며, 유한차분법(finite differential method, FDM)으로 수치해를 구하였다. 영가철 및 2가 산화철은 TCE에 의한 반응항과 철환원균에 의한 반응 항으로 나누어서 식을 정리했다. TCE 주입농도는 10 mg/L로 설정하여 영가철 및 2가 산화철에 의한 각각의 관계를 모델링했다. 또한, 철환원균 농도와 산화철 환원 모델을 통해 철환원균의 농도에 따른 산화철 환원 효율을 해석했고, 이것이 전체 TCE 분해에 어떤 영향을 주는지 모델로 나타냈다. 영가철 컬럼에서는 TCE 제거 효율이 60시간에서 235시간 동안 99% 이상을 나타냈고, 1,365시간 이후에 1% 이하로 떨어졌다. 2가 산화철 컬럼의 경우 TCE와 반응을 시작한 210시간 이후에 평형을 이루었고, 85.3%의 일정한 제거 효율을 나타냈다. 모델의 결과에 따르면, 철환원균에 의한 2가 산화철의 경우 영가철보다 TCE 제거 효율이 떨어지지만 더 높은 제거수명을 가질 수 있는 것으로 나타났다.

실리카계 물질에 의한 산화철 입자의 표면개질 (Surface Modification of Iron Oxide Particle by Silica-contained Materials)

  • 류병환;이정민;고재천
    • 공업화학
    • /
    • 제8권5호
    • /
    • pp.830-836
    • /
    • 1997
  • 본 실험에서는 물유리를 사용하여 산세척에 의하여 제조된 산화철 입자의 표면개질에 대하여 연구하였다. 사용한 물유리의 $SiO_2$$Na_2O$의 몰비($SiO_2/Na_2O$)는 1, 2, 3.5이였다. 첨가되는 실리카의 양과 pH에 따라 산화철 현탁액의 분산성을 입자의 표면하전과 침강속도에 의하여 평가하였다. 그리고, 중성 영역에서 산화철 입자의 분산안정성을 유지할 수 있는 표면개질제(실리카)의 양을 도출하였으며, 물유리에 의한 산화철 입자의 표면개질을 습식 볼밀링에 의하여 슬러리 상태에서 실시하였다. 그 결과, 표면처리한 산화철 현탁액의 분산 안정성은 실리카의 양과 pH에 상호 의존하였다. 미처리한 산화철은 등전점인 pH 8에서 분산안정성을 잃고 있었으나, 산화철에 대하여 약 0.8wt%의 실리카로 표면처리한 산화철은 pH 5 이상 중성영역에서 분산안정성을 나타내었으며, 음이온성 계면활성제를 0.2wt% 이상 첨가에 의한 분산안정성이 더욱 증가되었다.

  • PDF

산화철 배소에 따른 분체 특성 및 Sr-ferrite 자석의 소결 특성 (Characteristic of Iron Oxide and the Magnetic Properties of Sr-ferrite by Roasting Temperature of Iron Oxide)

  • 장세동
    • 자원리싸이클링
    • /
    • 제12권6호
    • /
    • pp.19-25
    • /
    • 2003
  • 제철소 냉연 공정의 염산 폐액에서 ruthner process 공법으로 제조된 산화철을 사용하여 2차 배소 온도변화에 따른 산화철의 분체 특성을 조사하였고, 산화철과 스트론튬을 건식 혼합 및 가소후 Sr-ferrite 자석을 제조하여 자기적 물리적 특성을 조사하였다. Ruthner proces의 산화철을 2차 배소를 실시한 경우, Cl- 함량이 적고 분체 특성이 안정적인 배소온도는 $800^{\circ}C$ 부근으로, 평균 입자(APS)는 1.5 $mu extrm{m}$, apparent bulk density(ABD)는 1.4 g/$m\ell$ 이며, Cl- 함유량은 0.05% 이하를 나타내었다. Ruthner process에서 제조된 산화철을 vibrating disk mill에서 1차 분쇄를 실시한 경우, Sr-ferrite magnet의 보자력(HcJ)은 229 kA/m에서 251 kA/m로 향상하였다. Sr-ferrite magnet의 소결 온도 변화에 따른 잔류자속밀도와 보자력의 희귀식은 Br≒-0.258HcJ+494의 함수 관계를 나타내고 있으며, 성형 중 가한 자장 방향과 수직방향에 따른 수축비는 산화철의 2차 배소 온도 $800^{\circ}C$까지는 1.6으로 안정적인 판상형으로 결정 성장을 나타내고 있으나, 그 이상의 온도로 2차 배소한 산화철을 사용한 경우에는 소결에서 결정이 더 커진 것으로 판단된다.

자성 산화철(iron oxide) 나노입자를 이용한 DNA 센서 개발 (Development of DNA Sensor Using Magnetic Iron Oxide Nanoparticle)

  • 남기창;송광섭
    • 전자공학회논문지SC
    • /
    • 제48권6호
    • /
    • pp.51-56
    • /
    • 2011
  • 자성 산화철 나노입자(iron oxide nanoparticle, ${\gamma}-Fe_2O_3$) 표면을 기능성 유기 분자를 이용하여 아민기($-NH_2$), 카르복실기(-COOH)로 표면 처리 하였으며, 이들 기능기로 표면 처리된 산화철 나노입자를 FT-IR을 이용하여 나노입자 표면을 분석하였다. 아민기, 카르복실기로 표면처리된 산화철 나노입자 표면에 특정 배열을 갖는 21-base pair 길이의 프로브 DNA를 고정하였고, 형광 라벨(Cy5)이 부착된 상보적, 비상보적 타게트 DNA를 이용하여 고정된 프로브 DNA와 hybridization을 진행하였다. 각각의 상보적, 비상보적 타게트 DNA와 hybridization 처리한 산화철 나노입자를 confocal microscopy를 이용하여 관찰하였으며, 그 결과 산화철 나노입자를 이용하여 특정 배열의 DNA검출에 성공하였다.

황색산화철을 포함하는 혼합형 추진제의 특성에 관한 연구 (Solid Propellants for Propulsion System Including a Yellow Iron Oxide)

  • 박성준;원종웅;박정호;박의용;최성한
    • 한국추진공학회지
    • /
    • 제22권3호
    • /
    • pp.65-71
    • /
    • 2018
  • 황색 산화철과 적색 산화철을 적용한 추진제의 초기점도는 각각 5.4, 5.6 kps로 특이한 차이점이 없었다. 또한 황색 산화철을 첨가한 물질의 열분해 속도가 적색 산화철을 첨가한 것 보다 빠르게 진행되며, 특히 고온 고압에서의 압력지수가 18% 낮은 것을 확인하였다. 황색 산화철을 적용한 추진제의 산화제 비율 변화에 따른 점도를 비교하면 큰 입자/작은 입자 비율 71%일 때 초기점도가 가장 낮았다.