• Title/Summary/Keyword: Fe-oxide

Search Result 1,374, Processing Time 0.031 seconds

Phosphate removal using novel combined Fe-Mn-Si oxide adsorbent (Fe-Mn-Si 산화물을 이용한 인제거 흡착연구)

  • Maeng, Minsoo;Lee, Haegyun;Dockko, Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.631-639
    • /
    • 2013
  • The removal of phosphate from surface water is becoming increasingly vital to prevent problems such as eutrophication, particularly near urban areas. Recent requirements to reduce high concentrations of phosphate rely on physicochemical methods and adsorbents that must be effective even under strict conditions. The phosphate removal efficiencies of two adsorbents, Fe-Mn-Si oxide and Fe-Mn oxide, were investigated and the data used to compare kinetics and isotherm models. The maximum adsorption capacities of the two adsorbents were 47.8 and 35.5 mg-$PO{_4}^{3-}/g$, respectively. Adsorptions in both cases were highly pH dependent; i.e., when the pH increased from 3 to 9, the average adsorption capacities of the two adsorbents decreased approximately 32.7 % and 20.3 %, respectively. The Freundlich isotherm model fitted the adsorption of Fe-Mn-Si oxide more closely than did the Langmuir model. Additionally, anionic solutions decreased adsorption because of competition with the anions in the adsorbing phosphate. Although affected by the presence of competing anions or a humic substance, Fe-Mn-Si oxide has better adsorption capacity than Fe-Mn oxide.

The Effect of Fe-Oxide Addition on the Sintered Structure of Cast Iron Power (주철분말(鑄鐵粉末)의 소결조직(燒結組織)에 미치는 산화철(酸化鐵) 첨가(添加)의 효과(效果))

  • Kim, Hyung-Soo;Kim, Chul-Bohm;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.10 no.2
    • /
    • pp.154-161
    • /
    • 1990
  • The microstructures of sintered products of $Fe_2O_3$or $Fe_3O_4$-Oxide added cast iron powder was investigated. And the effects of particle size distribution was investigated too. As the result, the structures of sintered products did not related to the species of Fe-Oxide. Th porosity of sintered products was decreased in size and spherodized with increasing sintering temperature, decreasing Fe-Oxide quantity. Fe-Oxide itself did not hinder sintering of cast iron powder particularly, therefore sintering could be occurred without termination of reduction of it. And the sintered products of finer particle size distribution had finer and more spherodized porosity, and had minimized the deviation of size and shape of porosity.

  • PDF

Characteristics of the TCE removal in FeO/Fe(II) System (FeO/Fe(II) 시스템에서 TCE의 제거 특성)

  • Sung, Dong Jun;Lee, Yun Mo;Choi, Won Ho;Park, Joo yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.149-152
    • /
    • 2008
  • The reaction between iron oxide and ferrous iron is known to be the adsorption of ferrous iron onto the oxide surfaces that produces Fe(II)-Fe(III) (hydr)oxides and ferrous oxide oxidized to ferric ion which is the reducing agent of the target compounds. In our investigations on DS/S using ferrous modified steel slag, the results did not follow the trends. FeO and Fe(II), the major component of steel slag, were used to investigate the degradation of TCE. Degradation did not take place for the first and suddenly degraded after awhile. Degradation of TCE in this system was unexpected because Fe(II)-Fe(III) (hydr)oxides could not be produced in absence of ferric oxide. In this study, the characteristics of FeO/Fe(II) system as a reducing agent were observed through the degradation of TCE, measuring byproducts of TCE and the concentration of Fe(II) and Fe(III). Adsorption of ferrous ion on FeO was observed and the generation of byproducts of TCE showed the degradation of TCE by reduction in the system is obvious. However it did not correspond with the typical reducing mechanisms. Future research on this system needs to be continued to find out whether new species are generated or any unknown mineral oxides are produced in the system that acted in the degradation of TCE.

Photoelectrochemical Property of Ti(IV)-Fe(III) Oxide Films Deposited by MOCVD (MOCVD법에 의한 Ti(IV)-Fe(III) 산화물 박막의 광전기화학적 특성)

  • 김현수;윤재홍
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.538-546
    • /
    • 1999
  • Ti(IV)-Fe(III) oxide films were formed by MOCVD technique, and their photoelectrochemical properties were examined in 0.5M N $a_2$$SO_4$ solution by a photoelectrochemical polarization test. Ti(IV)-Fe(III) oxide films deposited at 40$0^{\circ}C$ by MOCVD have crystalline structure and are all n-type semiconductors. The photocurrent and the quantum efficiency of the films increase with increasing the iron cationic fraction ($X_{Fe}$ ) in the films. The energy band gap of the films increase linearly with increasing the iron cationic fraction in the films. Ti(IV)-Fe(III) oxide film of $X_{Fe}$ /=0.60 has high photocurrent response and corrosion resistance simultaneously.

  • PDF

Characterization of Oxide Scales Formed on Fe3Al, Fe3Al-Cr, Fe3Al-Cr-Mo, Ni3Al and Ni3Al-Cr Alloys (Fe3Al, Fe3Al-Cr, Fe3Al-Cr-Mo, Ni3Al 및 Ni3Al-Cr 합금표면에 형성된 산화물 특성분석)

  • Shim, Woung-Shik;Lee, Dong-Bok
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.845-849
    • /
    • 2002
  • Alloys of $Fe_3$Al, $Fe_3$Al-6Cr, $Fe_3$Al-4Cr-1Mo, $Ni_3$Al, and $Ni_3$Al-2.8Cr were oxidized at $1000^{\circ}C$ in air, and the oxide scales formed were studied using XRD. SEM, EPMA, and TEM. The oxide scales that formed on $Fe_3$Al-based alloys consisted primarily of $\alpha$-$Al_2$$O_3$ containing a small amount of dissolved Fe and Cr ions, whereas those that formed on $Ni_3$Al-based alloys consisted primarily of $\alpha$-$Al_2$$O_3$, together with a small amount of $NiAl_2$$O_4$, NiO and dissolved Cr ions. For the entire alloys tested, nonadherent oxide scales formed, and voids were inevitably existed at the scale-matrix interface.

Synthesis and Electrochemical Performance of Polypyrrole-Coated Iron Oxide/Carbon Nanotube Composites

  • Kim, Dae-Won;Kim, Ki-Seok;Park, Soo-Jin
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.157-160
    • /
    • 2012
  • In this work, iron oxide ($Fe_3O_4$) nanoparticles were deposited on multi-walled carbon nanotubes (MWNTs) by a simple chemical coprecipitation method and $Fe_3O_4$-decorated MWNTs (Fe-MWNTs)/polypyrrole (PPy) nanocomposites (Fe-MWNTs/PPy) were prepared by oxidation polymerization. The effect of the PPy on the electrochemical properties of the Fe-MWNTs was investigated. The structures characteristics and surface properties of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were characterized by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The electrochemical performances of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were determined by cyclic voltammetry and galvanostatic charge/discharge characteristics in a 1.0 M sodium sulfite electrolyte. The results showed that the Fe-MWNTs/PPy electrode had typical pseudo-capacitive behavior and a specific capacitance significantly greater than that of the Fe-MWNT electrode, indicating an enhanced electrochemical performance of the Fe-MWNTs/PPy due to their high electrical properties.

Corrosion Behaviors of Structural Materialsin High Temperature S-CO2 Environments

  • Lee, Ho Jung;Kim, Hyunmyung;Jang, Changheui
    • Corrosion Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.41-47
    • /
    • 2014
  • The isothermal corrosion tests of several types of stainless steels, Ni-based alloys, and ferritic-martensitic steels (FMS) were carried out at the temperature of 550 and $650^{\circ}C$ in SFR S-$CO_2$ environment (200 bar) for 1000 h. The weight gain was greater in the order of FMSs, stainless steels, and Ni-based alloys. For the FMSs (Fe-based with low Cr content), a thick outer Fe oxide, a middle (Fe,Cr)-rich oxide, and an inner (Cr,Fe)-rich oxide were formed. They showed significant weight gains at both 550 and $650^{\circ}C$. In the case of austenitic stainless steels (Fe-based) such as SS 316H and 316LN (18 wt.% Cr), the corrosion resistance was dependent on test temperatures except SS 310S (25 wt.% Cr). After corrosion test at $650^{\circ}C$, a large increase in weight gain was observed with the formation of outer thick Fe oxide and inner (Cr,Fe)-rich oxide. However, at $550^{\circ}C$, a thin Cr-rich oxide was mainly developed along with partially distributed small and nodular shaped Fe oxides. Meanwhile, for the Ni-based alloys (16-28 wt.% Cr), a very thin Cr-rich oxide was developed at both test temperatures. The superior corrosion resistance of high Cr or Ni-based alloys in the high temperature S-$CO_2$ environment was attributed to the formation of thin Cr-rich oxide on the surface of the materials.

Evaluation of influence of dissolved oxygen on corrosion behaviors of FeCrW model alloys in 360 ℃ water

  • Jun Yeong Jo;Chi Bum Bahn;Hwasung Yeom
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4404-4411
    • /
    • 2024
  • The dissolved oxygen in a coolant can affect the oxidation properties of structural materials. A desirable oxide phase formation is achieved by manipulating the oxygen level in the coolant, which can mitigate structural material degradation in nuclear power plants. Therefore, the role of dissolved oxygen in the corrosion of structural materials in aqueous environments needs to be understood. In this study, a short-term corrosion test (up to 300 h) of Ferritic/Martensitic steels (F/M steels; FeCrW model alloys), namely, Fe12Cr1W, Fe9Cr1W, and Fe9Cr, in stagnant water at 360 ℃ was performed in a pressurized autoclave with the dissolved oxygen concentration controlled to 1 ppm or a very low level (<1 ppm). The results of the corrosion tests showed that an increase in the oxygen level in the water elevated the corrosion potential, allowing the phase transition of iron oxide from magnetite (Fe3O4) to hematite (Fe2O3), whereas there was no significant correlation between the concentrations of the alloying elements Cr and W and the oxide growth rate. In addition, hematite was found to mitigate further oxide growth. Finally, a mechanism for the growth of the initial oxide layer was proposed based on the experimental results.

Synthesis and Characteristics of W-Ni-Fe Nanocomposite Powder by Hydrogen Reduction of Oxides (산화물 수소환원에 의한 W-Ni-Fe 나노복합분말의 합성과 특성)

  • 이창우;윤의식;이재성
    • Journal of Powder Materials
    • /
    • v.8 no.1
    • /
    • pp.49-54
    • /
    • 2001
  • The synthesis and characteristics of W-Ni-Fe nanocomposite powder by hydrogen reduction of ball milled W-Ni-Fe oxide mixture were investigated. The ball milled oxide mixture was prepared by high energy attrition milling of W blue powder, NiO and $Fe_2O_3$ for 1 h. The structure of the oxide mixture was characteristic of nano porous agglomerate composite powder consisting of nanoscale particles and pores which act as effective removal path of water vapor during hydrogen reduction process. The reduction experiment showed that the reduction reaction starts from NiO, followed by $Fe_2O_3$ and finally W oxide. It was also found that during the reduction process rapid alloying of Ni-Fe yielded the formation of $\gamma$-Ni-Fe. After reduction at 80$0^{\circ}C$ for 1 h, the nano-composite powder of W-4.57Ni-2.34Fe comprising W and $\gamma$-Ni-Fe phases was produced, of which grain size was35nm for W and 87 nm for $\gamma$-Ni-Fe, respectively. Sinterability of the W heavy alloy nanopowder showing full density and sound microstructure under the condition of 147$0^{\circ}C$/20 min is thought to be suitable for raw material for powder injection molding of tungsten heavy alloy.

  • PDF