DOI QR코드

DOI QR Code

Effect of Tobermolite, Perlite and Polyurethane Packing Materials on Methanotrophic Activity

메탄산화세균의 활성에 미치는 tobermolite, perlite 및 Polyurethane 담체의 영향

  • Jeong, So-Yeon (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Yoon, Hee-Young (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kim, Tae Gwan (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • 정소연 (이화여자대학교 환경공학과) ;
  • 윤희영 (이화여자대학교 환경공학과) ;
  • 김태관 (이화여자대학교 환경공학과) ;
  • 조경숙 (이화여자대학교 환경공학과)
  • Received : 2013.01.09
  • Accepted : 2013.03.31
  • Published : 2013.06.28

Abstract

Biofilters for the removal of methane using tobermolite, perlite and polyurethane as packing materials have been undergoing recent development. The effects of these packing materials on methane oxidation activity were evaluated in this study. Mixed methanotrophs (consortia A, B, C and D) from wetland and landfill soils were used as the inoculum sources. The influences of packing materials, consisting of tobermolite, perlite, and polyurethane, on the methane oxidation rate and methanotrophic bio-mass, were estimated. When perlite was added into the methanotrophic cultures, the methane oxidation rate was more than twice that of the control (without packing materials), and the methanotrophic biomass increased more than 10 fold. The ratio of methanotrophic bacteria to total bacteria under with tobermolite packing material was higher than the control and the other packing materials, indicating that tobermolite can serve as a specific packing material where dominance of methanotrophs is desired. Therefore, perlite and tobermolite provide habitats which increase the activity of methanotrophic bacteria, and these packing materials are promising for use in methane oxidation processes.

Tobermolite, perlite 및 polyurethane을 충전재로 이용한 바이오필터에 의한 메탄제거 기술이 개발되고 있다. 본 연구에서는 이들 충전재가 메탄산화능에 미치는 영향을 알아보았다. 습지토양과 매립지토양에서 분리한 혼합 메탄산화세균(consortium A, B, C and D)를 접종원으로 하고, 메탄산화속도와 메탄산화세균 수에 미치는 담체(perlite, tobermolite,polyurethane)의 영향을 조사하였다. Perlite를 첨가한 경우 메탄산화속도는 대조군 (담체 미첨가)보다 두 배 이상 증가하였고, 메탄산화세균 수도 10배 이상 증가하였다. Tobermolite를 첨가한 경우에는 일반세균 수 대비 메탄산화세균의 비율이 대조군과 다른 담체에 비해 높았다. 이는 tobermolite가 메탄산화세균이 우점할 수 있는 특이적 담체로 작용함을 시사한다. 이상의 결과로 부터 perlite와 tobermolite는 메탄산화세균의 활성을 증가시키는 서식지를 제공하며 메탄산화 공정시스템에 적용 시 좋은 담체의 역할을 할 수 있을 것으로 기대된다.

Keywords

References

  1. Cha, G. S. 2006. Estimation of biofilter media for removal of ammonia. Korean J. Odor Res. Eng. 5: 146-150.
  2. Cho, K. S. and H. W. Ryu. 2009. Biotechnology for the mitigation of methane emission from landfills. Korean J. Microbiol. Biotechnol. 37: 293-305.
  3. Daza, A., C. Santamaria, D. Rodriguez-Navarro, M. Camacho,R. Orive, and F. Temprano. 2000. Perlite as a carrier for bacterial inoculants. Soil Biol. Biochem. 32: 567-572. https://doi.org/10.1016/S0038-0717(99)00185-6
  4. Gebert, J., A. Groengroeft, and G. Miehlich. 2003. Kinetics of microbial landfill methane oxidation in biofilters. Waste Manage. 23: 609-619. https://doi.org/10.1016/S0956-053X(03)00105-3
  5. Girard, M., P. Viens, A. A. Ramirez, R. Brzezinski, G. Buelna, and M. Heitz. 2012. Simultaneous treatment of methane and swine slurry by biofiltration. J. Chem. Technol. Biot. 87: 697-704. https://doi.org/10.1002/jctb.3692
  6. He, R., J. Wang, F. F. Xia, L. J. Mao, and D. S. Shen. 2012. Evaluation of methane oxidation activity in waste biocover soil during landfill stabilization. Chemosphere 89: 672-679. https://doi.org/10.1016/j.chemosphere.2012.06.008
  7. Hettiarachchi, V. C., P. J. Hettiaratchi, A. K. Mehrotra, and S. Kumar. 2011. Field-scale operation of methane biofiltration systems to mitigate point source methane emissions. Environ. Pollut. 159: 1715-1720. https://doi.org/10.1016/j.envpol.2011.02.029
  8. Huber-Humer, M., J. Gebert, and H. Hilger. 2008. Biotic systems to mitigate landfill methane emissions. Waste Manage. Res. 26: 33-46. https://doi.org/10.1177/0734242X07087977
  9. Kettunen, R. H., J. K. M. Einola, and J. A. Rintala. 2006. Landfill methane oxidation in engineered soil columns at low temperature. Water Air Soil Poll. 177: 313-334. https://doi.org/10.1007/s11270-006-9176-0
  10. Kim, T. G., T. Yi, E.-H. Lee, H. W. Ryu, and K.-S. Cho. 2012. Characterization of a methane-oxidizing biofilm using microarray, and confocal microscopy with image and geostatic analyses. Appl. Microbial. Biot. 95: 1051-1059. https://doi.org/10.1007/s00253-011-3728-y
  11. Kolb, S., C. Knief, S. Stubner, and R. Conrad. 2003. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl. Environ. Microbiol. 69: 2423-2429. https://doi.org/10.1128/AEM.69.5.2423-2429.2003
  12. Kumaresan, D., M. Hry, L. Bodrossy, A. C. Singer, N. Stralis- Pavese, I. P. Thompson, and J. C. Murrell. 2011. Earthworm activity in a simulated landfill cover soil shifts the community composition of active methanotrophs. Res. Microbiol. 162: 1027-1032. https://doi.org/10.1016/j.resmic.2011.08.002
  13. Lee, E.-H., T. Yi, K.-E. Moon, H. Park, H. W. Ryu, and K.-S. Cho. 2011. Characterization of methane oxidation by a methanotroph isolated from a landfill cover soil, south Korea. J. Microbiol. Biotechnol. 21: 753-756. https://doi.org/10.4014/jmb.1102.01055
  14. Nikiema, J., L. Bibeau, J. Lavoie, R. Brzezinski, J. Vigneux, and M. Heitz. 2005. Biofiltration of methane: An experimental study. Chem. Eng. J. 113: 111-117. https://doi.org/10.1016/j.cej.2005.04.005
  15. Nikiema, J. and M. Heitz. 2010. The use of inorganic packing materials during methane biofiltration. IJChER 2010: Article ID 573149.
  16. Ortiz, I., S. Revah, and R. Auria. 2003. Effects of packing material on the biofiltration of benzene, toluene and xylene vapours. Environ. Technol. 24: 265-275. https://doi.org/10.1080/09593330309385559
  17. Pagans, E., X. Font, and A. Snchez. 2005. Biofiltration for ammonia removal from composting exhaust gases. Chem. Eng. J. 113: 105-110. https://doi.org/10.1016/j.cej.2005.03.004
  18. Paw owska, M., A. Roz . ej, and W. St pniewski. 2011. The effect of bed properties on methane removal in an aerated biofilter-Model studies. Waste Manage. 31: 903-913. https://doi.org/10.1016/j.wasman.2010.10.005
  19. Philopoulos, A., J. Ruck, D. McCartney, and C. Felske. 2009. A laboratory-scale comparison of compost and sandcompost- perlite as methane-oxidizing biofilter media. Waste Manage. Res. 27: 138-146. https://doi.org/10.1177/0734242X08091555
  20. Ryu, H. W., K. S. Cho, and D. J. Chung. 2010. Relationships between biomass, pressure drop, and performance in a polyurethane biofilter. Bioresour. Technol. 101: 1745-1751. https://doi.org/10.1016/j.biortech.2009.10.018
  21. Sene, L., A. Converti, M. Felipe, and M. Zilli. 2002. Sugarcane bagasse as alternative packing material for biofiltration of benzene polluted gaseous streams: a preliminary study. Bioresour. Technol. 83: 153-157. https://doi.org/10.1016/S0960-8524(01)00192-4
  22. Tate, K., A. Walcroft, and C. Pratt. 2012. Varying atmospheric methane concentrations affect soil methane oxidation rates and methanotroph populations in pasture, an adjacent pine forest, and a landfill. Soil Biol. Biochem. 52: 75-81. https://doi.org/10.1016/j.soilbio.2012.04.011

Cited by

  1. Functional rigidity of a methane biofilter during the temporal microbial succession vol.98, pp.7, 2013, https://doi.org/10.1007/s00253-013-5371-2
  2. Tobermolite effects on methane removal activity and microbial community of a lab-scale soil biocover vol.41, pp.7, 2013, https://doi.org/10.1007/s10295-014-1448-x
  3. 매립지 메탄 저감을 위한 바이오커버의 현장 적용 평가 vol.45, pp.4, 2017, https://doi.org/10.4014/mbl.1708.08004