DOI QR코드

DOI QR Code

Production of Biodiesel and Nutrient Removal of Municipal Wastewater using a Small Scale Raceway Pond

미세조류 옥외 배양시스템을 이용한 바이오디젤 생산 및 도시하수 영양 염류 제거

  • Kang, Zion (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Byung-Hyuk (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Oh, Hee-Mock (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Hee-Sik (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • 강시온 (한국생명공학연구원 환경바이오연구센터) ;
  • 김병혁 (한국생명공학연구원 환경바이오연구센터) ;
  • 오희목 (한국생명공학연구원 환경바이오연구센터) ;
  • 김희식 (한국생명공학연구원 환경바이오연구센터)
  • Received : 2013.01.03
  • Accepted : 2013.02.12
  • Published : 2013.06.28

Abstract

A concerted effort to develop alternative forms of energy is underway due to fossil fuel shortages and its deleterious effects. Recently, bioenergy from microalgae has gained prominence and the use of municipal wastewater as a low cost alternative for a nutrient source has significant advantages. In this study, we have employed municipal wastewater directly after primary treatment (primary settling basin) in a small scale raceway pond (SSRP) for microalgal growth. Indigenous microalgae in the wastewater were encouraged to grow in the SSRP under optimal conditions. The mean removal efficiencies of TN, TP, and $NH_3-N$ after 6 days were 77.77%, 63.55%, and 89.02%, respectively. The average lipid content of the microalgae was 19.51% of dry cell weight, and linolenate and linoleate (18:n) were the predominant fatty acids. The 18S rRNA gene analysis and microscopic observations of the indigenous microalgae community revealed the presence of Chlorella vulgaris and Scenedesmus obliquus as the dominant microalgae. These results indicate that untreated municipal wastewater, serving as an excellent nitrogen and phosphate source for microalgal growth, could be treated using microalgae in open raceway ponds. Moreover, microalgal biomass could be further profitable by the extraction of biodiesel.

화석연료의 매장량 한계와 해로운 영향으로 인하여 이를 대신할 대체 에너지연구가 요구되고 있다. 최근, 미세조류를 통한 바이오에너지 생산이 주목을 받고 있으며, 도시하수를 영양원으로 이용하여 미세조류를 배양하는 것은 생산비용을 낮추는 좋은 대안이 될 수 있다. 본 연구에서는 옥외 수질정화 배양 시스템(Small Scale Raceway Pond; SSRP)을 이용하여 적용했다. 실험에 사용한 도시하수는 하수종말처리장의 1차 침전지를 거친 유입수를 이용하였으며, 토착 미세조류를 SSRP에서 배양하였다. 체류시간 6일 운전 후 TN, TP, $NH_3-N$의 평균 제거 효율은 77.77%, 63.55%, 89.02%로 각각 나타났다. 또한 미세조류 내의 지질함량은 평균 19.51%로 나타났으며, FAME는 주로 18:n인 linolenate, linoleate로 이루어져 있음을 확인하였다. 18S rRNA 유전자 분석과 현미경 관찰을 통하여 녹조류인 Chlorella와 Scenedesmus가 우점하는 것을 확인하였다. 이러한 결과를 통하여 도시하수는 미세조류 배양에 필요한 질소와 인을 제공할 수 있으며, 미세조류를 이용한 SSRP를 통하여 정화될 수 있는 가능성을 확인하였다. 또한 미세조류 배양을 통해 얻어진 바이오매스는 바이오디젤 전환을 통하여 상업화될 수 있는 가능성을 확인하였다.

Keywords

References

  1. Aaronson, S. and Z. Dubinsky. 1982. Mass production of microalgae. Cell. Mol. Life Sci. 38: 36-40. https://doi.org/10.1007/BF01944523
  2. APHA. 1998. Standard methods for the examination of water and wastewater. APHA, Washington, DC. 20th ed.
  3. Bligh, E. G. and W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37: 911- 9117. https://doi.org/10.1139/o59-099
  4. Cain, J. R., D. C. Paschal, and C. M. Hayden. 1980. Toxicity and bioaccumulation of cadmium in the colonial green alga Scenedesmus obliquus. Arch. Environ. Contam. Toxicol. 9: 9-16. https://doi.org/10.1007/BF01055495
  5. Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  6. Craggs, R. J., P. J. McAuley, and V. J. Smith. 1997. Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Res. 31: 1701-1707. https://doi.org/10.1016/S0043-1354(96)00093-0
  7. Galbraith, K. 2009. Obama signs stimulus packed with clean energy provisions. The New York Times.
  8. Garber, K. 2009. Top 5 Issues at the Copenhagen Climate Conference. US News.
  9. Gonzalez, L. E., R. O. Canizares, and S. Baena. 1997. Efficiency of ammonia and phosphorus removal from a colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour. Technol. 60: 259-262. https://doi.org/10.1016/S0960-8524(97)00029-1
  10. Guerrero, M. G., J. M. Vega, and M. Losada. 1981. The assimilatory nitrate-reducing system and its regulation. Ann. Rev. Plant Physiol. 32: 169-204. https://doi.org/10.1146/annurev.pp.32.060181.001125
  11. Jeong, M. L., J. M. Gillis, and J. -Y. Hwang. 2003. Carbon dioxide mitigation by microalgal photosynthesis. Bull. Korean Chem. Soc. 24: 1763-1766. https://doi.org/10.5012/bkcs.2003.24.12.1763
  12. Knothe, G. 2011. A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform? Green Chem. 13: 3048-3065. https://doi.org/10.1039/c0gc00946f
  13. Lee, E. K. 2012. Change of energy related legislation system in Korea and USA. Korean Environ. Law Assoc. 34: 117-157.
  14. Lee, J. Y., C. Yoo, S. Y. Jun, C. Y. Ahn, and H. M. Oh. 2010. Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol. 101: S75-S77. https://doi.org/10.1016/j.biortech.2009.03.058
  15. Li, Y., M. Horsman, B. Wang, N. Wu, and C. Q. Lan. 2008. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 81: 629-636. https://doi.org/10.1007/s00253-008-1681-1
  16. Liang, F. -Y., M. Ryvak, S. Sayeed, and N. Zhao. 2012. The role of natural gas as a primary fuel in the near future, including comparisons of acquisition, transmission and waste handling costs of as with competitive alternatives. Chem. Cent. J. 6 (Suppl 1): S4.
  17. Mandal, S. and N. Mallick. 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl. Microbiol. Biotechnol. 84: 281-291. https://doi.org/10.1007/s00253-009-1935-6
  18. Martinez, M. E., S. Sanchez, J. M. Jimenez, F. E. Yousfi, and L. Munoz. 2000. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour. Technol. 73: 263-272. https://doi.org/10.1016/S0960-8524(99)00121-2
  19. Morris, I. and P. J. Syrett. 1963. The development of nitrate reductase in Chlorella and its repression by ammonium. Arch. Microbiol. 47: 32-41.
  20. Muyzer, G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2: 317- https://doi.org/10.1016/S1369-5274(99)80055-1
  21. Muyzer, G., E. C. D. Waal, and A. G. Uitierlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
  22. Nakayama, T., S. Watanabe, K. Mitsui, H. Uchida, and I. Inouye. 1996. The phylogenetic relationship between the Chlamydomonadales and Chlorococcales inferred from 18S rDNA sequence data. Phycol. Res. 44: 47-55. https://doi.org/10.1111/j.1440-1835.1996.tb00037.x
  23. Oh, S. H., J. G. Han, N. Y. Kim, C. J. Sub, Y. T. Bin, L. S. Young, and L. H. Youg. 2009. Cell growth and lipid production from fed-batch cultivation of Chlorella minutissima according to culture condition. KSBB J. 24: 377-382.
  24. Park, S. H. and J. K. Koh. 2012. Greenhouse Gas Emission Allocation for Provinces in Korea. J. Korean Regional Sci. Assoc. 28: 39-57.
  25. Pittman, J. K., A. P. Dean, and O. Osundeko. 2011. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 102: 17-25. https://doi.org/10.1016/j.biortech.2010.06.035
  26. Smith, F. W. and J. F. Thompson. 1971. Regulation of nitrate reductase in Chlorella vulgaris. Plant Physiol. 48: 224-227. https://doi.org/10.1104/pp.48.2.224
  27. Soeder, C. J. 1980. Mass production of microalgae: Results and Prospects. Hydrobiologia 72: 197-209. https://doi.org/10.1007/BF00016247
  28. Syrett, P. J. and I. Morris. 1963. The inhibition of nitrateassimilation by ammonium in Chlorella. Biochimica et Biophysica Acta 67: 566-575. https://doi.org/10.1016/0926-6569(63)90277-3
  29. Wilkiea, A. C. and W. W. Mulbry. 2002. Recovery of dairy manure nutrients by benthic fresh water algae. Bioresour. Technol. 84: 81-91. https://doi.org/10.1016/S0960-8524(02)00003-2
  30. Yun, Y. S., S. B. Lee, J. M. Park, C. I. Lee, and J. W. Yang. 1997. Carbon dioxide fixation by algal cultivation using wastewater nutrients. J. Chem. Tech. Biotechnol. 69: 451-455. https://doi.org/10.1002/(SICI)1097-4660(199708)69:4<451::AID-JCTB733>3.0.CO;2-M
  31. Yun, Y. S., J. M. Park, and J. W. Yang. 1996. Enhancement of CO2 tolerance of Chlorella vulgaris by gradual increase of CO2 concentration. Biotechnology Techniques 10: 713-716.

Cited by

  1. 미세조류 옥외배양 시스템을 이용한 돈분 액체 비료의 영양염류 제거 및 바이오디젤 생산 vol.32, pp.1, 2013, https://doi.org/10.11626/kjeb.2014.32.1.026
  2. 바이오디젤 생산을 위한 미세조류 옥외배양 시스템의 영양원에 따른 미세조류 성장 특성 비교 vol.50, pp.4, 2013, https://doi.org/10.7845/kjm.2014.4076
  3. Research and development for algae-based technologies in Korea: a review of algae biofuel production vol.123, pp.3, 2013, https://doi.org/10.1007/s11120-014-9974-y
  4. 신규 분리된 담수미세조류 Parachlorella sp.의 지방산 생산성 향상을 위한 배지 조성 연구 vol.48, pp.3, 2013, https://doi.org/10.4014/mbl.1912.12020