DOI QR코드

DOI QR Code

Comparison of Methanotrophic Activity at Top and Bottom Layers in Up-flow Biofilters

상향식 바이오필터에서 상.하층의 메탄 산화 특성 비교

  • Yun, Jeonghee (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kim, Jung Mi (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kim, Ji Eun (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Lee, Daseul (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • 윤정희 (이화여자대학교 환경공학과) ;
  • 김정미 (이화여자대학교 환경공학과) ;
  • 김지은 (이화여자대학교 환경공학과) ;
  • 이다슬 (이화여자대학교 환경공학과) ;
  • 조경숙 (이화여자대학교 환경공학과)
  • Received : 2013.01.09
  • Accepted : 2013.04.04
  • Published : 2013.06.28

Abstract

The methane oxidation characteristics at the top and bottom layers in up-flow biofilters were investigated. Two biofilters were packed with perlite and tobermolite (biofilter A: respectively top and bottom; biofilter B: respectively bottom and top) and then compared. The methane oxidation rate was analyzed with the packed bed of the biofilter layers. The bacterial population in the biofilter was characterized using quantitative real-time PCR. For the methane oxidation rate of the biofilter A column, the perlite top part ($845.16{\pm}64.78{\mu}mol{\cdot}VS^{-1}{\cdot}h^{-1}$) gave a relatively higher value than the tobermolite bottom part ($381.85{\pm}42.00{\mu}mol{\cdot}VS^{-1}{\cdot}h^{-1}$). For the methane oxidation rate of the biofilter B column, the tobermolite top part ($601.25{\pm}37.78{\mu}mol{\cdot}VS^{-1}{\cdot}h^{-1}$) provided a relatively higher value than the perlite bottom part ($411.07{\pm}53.02{\mu}mol{\cdot}VS^{-1}{\cdot}h^{-1}$). The pmoA gene copy numbers, responsible for methanotrophs, in the top layer of biofilter A (1.27E+13 pmoA gene copy number/mg-VSS) was higher than in the bottom layer (3.33E+13 pmoA gene copy number/mg-VSS). However, the population of methanotrophs in biofilter B was not significantly different between the top and bottom layers. These results suggest that although the methane oxidation rates of perlite and tobermolite in the top parts of biofilter A and B were high, methanotroph populations were higher in the bottom parts of both biofilters, with a rapid decline in methane concentrations within the biofilters.

Perlite와 tobermolite 담체를 각각 상 하단(바이오필터 A) 또는 하 상단(바이오필터 B)으로 충전한 상향식 바이오필터에서 상하단의 메탄산화 특성을 비교하였다. 각 바이오필터에서 상단과 하단 담체를 채취하여 메탄산화속도를 측정하고, 정량적 real time PCR 방법을 이용하여 메탄산화세균수를 정량분석 하였다. 혼합담체의 층적배열 차이에 따른 각 담체의 순수 메탄산화속도를 조사한 결과, biofilter A perlite 상단이 $845.16{\pm}64.78{\mu}mol{\cdot}VS^{-1}{\cdot}h^{-1}$로 tobermolite 하단 $381.85{\pm}42.00{\mu}mol{\cdot}VS^{-1}{\cdot}h^{-1}$에 비하여 상대적으로 높았다(p < 0.005). 또한, biofilter B tobermolite의 상단($601.25{\pm}37.78{\mu}mol{\cdot}VS^{-1}{\cdot}h^{-1}$)이 perlite 하단($411.07{\pm}53.02{\mu}mol{\cdot}VS^{-1}{\cdot}h^{-1}$)에 비하여 메탄산화속도가 높았다(p < 0.005). 바이오필터 A는 상단(1.27E+13 pmoA gene copy number/mg-VSS)보다는 하단(3.33E+13 pmoA gene copy number/mg-VSS) (p < 0.05)에 더 많은 메탄 산화 세균이 존재하였다. 그러나, 바이오필터 B는 상단과 하단간의 메탄 산화 세균수의 차이는 유의하지 않은 것으로 나타났다(p > 0.05). Perlite와 tobermolite로 충진된 각 담체의 순수 메탄산화속도는 상단부에 위치한 담체들이 높았음에도 불구하고 바이오필터내에서 메탄농도 감소폭이 컸던 하단부에서 메탄산화세균이 많이 존재하였다.

Keywords

References

  1. Bender, M. and R. Conrad. 1995. Effect of $CH_4$ concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Bio. Biochem. 27: 1517-1527. https://doi.org/10.1016/0038-0717(95)00104-M
  2. Cho, K. and H. Ryu. 2009. Biotechnology for the mitigation of methane emission from landfills. Korean J. Microbiol. Biotechnol. 37: 293-305.
  3. Czepiel, P. M., B. Mosher, P. M. Crill, and R. C. Harriss. 1996. Quantifying the effect of oxidation on landfill methane emissions. J. Geophy. Res. 101: 16721-16729. https://doi.org/10.1029/96JD00222
  4. Delhome . nie, M. C. and M. Heitz. 2005. Biofiltration of air: A review. Crit. Rev. Biotechnol. 25: 53-72. https://doi.org/10.1080/07388550590935814
  5. Gebert, J., A. Gröngröft, M. Schloter, and A. Gattinger. 2004. Community structure in a methanotroph biofilter as revealed by phospholipid fatty acid analysis. FEMS Microbiol. Lett. 240: 61-68. https://doi.org/10.1016/j.femsle.2004.09.013
  6. Haththotuwa, H. G. C. K. 2005. Controlling factors affecting microbial methane oxidation in different soil environments. 7th World Congress on Recovery, Recycling and Re-integration. Poster presentation. Abstract no. 164.
  7. Intergovernmental Panel on Climate Change (IPCC). 2007. Climate change 2007: The physical science basis. Cambridge University Press. Cambridge. UK. Chapter 1: 93-128.
  8. Kim, I. and H. Choi. 2002. Engineering analysis of biofilter. Korean J. Biotechnol. Bioeng. 17: 115-120.
  9. Kim, I., T. Lee, H. Ryu, and K. S. Cho. 2002. Toluene removal by the Scoria biofilter using microbial consortium isolated by enrichment culture from oil-contaminated soil. Korean J. Odor Res. Eng. 1: 39-46.
  10. Kim, S., W. Namkoong, J. Park, Y. Park, and N. Lee. 2005. Treatment of benzene vapor gas with compost and calcium silicate porous biofilters. J. Korean Oil Chemists' Soc. 22: 21-27.
  11. Kim, T. G., E. H. Lee, and K. S. Cho. 2012. Effects of nonmethanevolatile organic compounds on microbial community of methanotrophic biofilter. Appl. Microbiol. Biotechnol. DOI 10.1007/s00253-012-4443-z.
  12. Kim, T. G., E. H. Lee, T. Lee, H. Ryu, and K. S. Cho. 2011. Biofiltration of methane with expanded perlite and granular activated carbon, and comparison of removal efficacies of the packing materials. Korean Society of Soil and Groundwater Environment, Spring Conference: pp. 87.
  13. Lee, E. H., H. Park, Y. S. Ho, H. W. Ryu, and K. S. Cho. 2010. Application of methodology for microbial community analysis to gas-phase biofilters. Korean Chem. Eng. Res. 48: 147-156.
  14. Melse, R. W. and A. W. Van der Werf. 2005. Biofiltration for mitigation of methane emission from animal husbandry. Environ. Sci. Technol. 39: 5460-5468. https://doi.org/10.1021/es048048q
  15. Namkoong, W., J. S. Park, and N. S. Lee. 2000. Principle and application of biofiltration. J. Korean Organic Res. Recycling Assoc. 8: 60-67.
  16. Nikiema, J., R. Brzezinski, and M. Heitz. 2007. Elimination of methane generated from landfills by biofiltration: a review. Rev. Environ. Sci. Biotechnol. 6: 261-284. https://doi.org/10.1007/s11157-006-9114-z
  17. Nikiema, J. and M. Heitz. 2010. The use of inorganic packing materials during methane biofiltration. Int. J. Chem. Eng., doi:10.1155/2010/573149.
  18. Philopoulos, A., J. Ruck, D. McCartney, and C. Felske. 2009. A laboratory-scale comparison of compost and sand-compost- perlite as methane-oxidizing biofilter media. Waste Manag. Res. 27: 138-146. https://doi.org/10.1177/0734242X08091555
  19. Ryu, H. W. and K. S. Cho. 2012. Characterization of the bacterial community in a biovoveer for the removal of methane, benzene and toluene. Korean J. Microbiol. Biotechnol. 40: 76-81. https://doi.org/10.4014/kjmb.1201.01003
  20. Scheutz, C., P. Kjeldsen, J. E. Bogner, A. De Visscher, J. Gebert, H. A. Hilger, M. Huber-Humer, and K. Spokas. 2009. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag. Res. 27: 409-455. https://doi.org/10.1177/0734242X09339325
  21. Streese, J. and R. Stegmann. 2003. Design of biofilters for methane oxidation. Proceedings Sardinia 2003, 9th International Waste Management and Landfill Symposium, CISA, Cagliari, Italy.
  22. Wilshusen, J. H., J. P. A. Hettiaratchi, and V. B. Stein. 2004. Long-term behavior of passively aerated compost methanotrophic biofilter columns. Waste Manag. 24: 643-653. https://doi.org/10.1016/j.wasman.2003.12.006