DOI QR코드

DOI QR Code

폐기물로부터 메탄발생량 예측을 위한 Sigmoidal 식과 1차 반응식의 통계학적 평가

Statistical Evaluation of Sigmoidal and First-Order Kinetic Equations for Simulating Methane Production from Solid Wastes

  • 이남훈 (안양대학교 환경에너지공학과) ;
  • 박진규 ((주)에코윌플러스) ;
  • 정새롬 (안양대학교 환경에너지공학과) ;
  • 강정희 (안양대학교 환경에너지공학과) ;
  • 김경 (안양대학교 환경에너지공학과)
  • Lee, Nam-Hoon (Department of Environmental and Energy Engineering, Anyang University) ;
  • Park, Jin-Kyu (Ecowillplus Co, Ltd.) ;
  • Jeong, Sae-Rom (Department of Environmental and Energy Engineering, Anyang University) ;
  • Kang, Jeong-Hee (Department of Environmental and Energy Engineering, Anyang University) ;
  • Kim, Kyung (Department of Environmental and Energy Engineering, Anyang University)
  • 발행 : 2013.06.30

초록

본 연구의 목적은 고형폐기물의 메탄발생 특성을 나타내기 위한 1차 반응식과 S형태 식들의 적합성을 평가하는 것이다. S형태 식은 수정 Gompertz와 Logistic 식을 사용하였다. 모델의 적합성을 평가하기 위해 잔차제곱합, 표준제곱근 오차, Akaike's information criterion 등의 통계분석을 실시하였다. AIC (Akaike's information criterion)는 모델의 변수 개수 차이에 따른 모델 적합성을 비교하기 위하여 적용하였다. 1차 반응식의 경우 지체기를 고려하지 않을 때보다 고려하였을 경우 잔차제곱합과 표준제곱근 오차는 감소하는 것으로 나타났다. 그러나 1차 반응식의 경우 S형태 식보다 AIC가 상대적으로 높게 나타났다. 이는 S형태 식이 1차 반응식보다 메탄발생특성을 나타낼 때에 더욱 적합한 것으로 사료된다.

The objective of this research was to evaluate the suitability of sigmoidal and firstorder kinetic equations for simulating the methane production from solid wastes. The sigmoidal kinetic equations used were modified Gompertz and Logistic equations. Statistical criteria used to evaluate equation performance were analysis of goodness-of-fit (Residual sum of squares, Root mean squared error and Akaike's Information Criterion). Akaike's Information Criterion (AIC) was employed to compare goodness-of-fit of equations with same and different numbers of parameters. RSS and RMSE were decreased for first-order kinetic equation with lag-phase time, compared to the first-order kinetic equation without lag-phase time. However, first-order kinetic equations had relatively higher AIC than the sigmoidal kinetic equations. It seemed that the sigmoidal kinetic equations had better goodness-of-fit than the first-order kinetic equations in order to simulate the methane production.

키워드

참고문헌

  1. Shin, H. S., Moon, M. J., Song, Y. C. and Bae, B. U., "A study on anaerobic treatability of food waste using biodegradability test", J. of KSWM, 10(1), pp. 35-42. (1993).
  2. Lay, J. J., Li, Y. Y. and Noike, T., "Developments of bacterial population and methanogenic activity in a laboratory-scale landfill bioreactor", Water Res., 32(12), pp. 3673-3679. (1998). https://doi.org/10.1016/S0043-1354(98)00137-7
  3. De Gioannis, G., Muntoni, A., Cappai, G. and Milia, S., "Landfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants", Waste Manage., 29(3), pp. 1026-1034. (2009). https://doi.org/10.1016/j.wasman.2008.08.016
  4. Kumar, S., Mondal, A. N., Gaikward, S. A., Devotta, S. and Singh, R. N., "Qualitative assessment of methane emission inventory from municipal solid waste disposal sites: a case study", Atmos. Environ., 38(29), pp. 4921-4929. (2004). https://doi.org/10.1016/j.atmosenv.2004.05.052
  5. Ledakowicz, S. and Kaczarek, K., "Laboratory simulation of anaerobic digestion of municipal solid waste", J. Environ. Sci. Health Part A: Tox. Hazard. Subst. Environ. Eng., 39(4), pp. 859-871. (2004). https://doi.org/10.1081/ESE-120028398
  6. Morris, J. W. F., Vasuki, N. C., Baker, J. A. and Pendleton, C. H., "Findings from long-term monitoring studeis at MSW landfill facilities with leachate recirculation", Waste Manage., 23(7), pp. 656-666. (2003).
  7. Valencia, R., van der Zon, W., Woelders, H., Lubberding, H. J. and Gijzen, H. J., "The effect of hydraulic conditions on waste stabilisation in bioreactor landfill simulators", Bioresour. Technol., 100(5), pp. 1754-1761. (2009). https://doi.org/10.1016/j.biortech.2008.09.055
  8. Lo, H. M., Kurniawan, T. A., Sillanpaa, M. E. T., Pai, T. Y., Chiang, C. F., Chao, K. P., Liu, M. H., Chuang, S. H., Banks, C. J., Wang, S. C., Lin, K. C., Liu, W. F., Cheng, P. H., Chen, C. K., Chiu, H. Y. and Wu, H. Y., "Modeling biogas generation from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors", Bioresour. Technol., 101(16), pp. 6329-6335. (2010). https://doi.org/10.1016/j.biortech.2010.03.048
  9. Shin, H. S., Kim, H. W., Han, S. K. and Kang, S. T., "Degradation characteristics in anaerobic co-digestion of sewage sludge and food waste", J. of KOWREC, 10(1), pp. 96-101. (2002).
  10. Benbelkacem, H., Bayard, R., Abdelhay, A., Zhang, Y. and Gourdon, R., "Effect of leachate injection modes on municipal solid waste degradation in anaerobic bioreactor", Bioresour. Technol., 101(14), pp. 5206-5212. (2010). https://doi.org/10.1016/j.biortech.2010.02.049
  11. Park, J. K., Kim, I. H., Ahn, Y. M., Higuchi, S. and Lee, N. H., "Assessment of dynamic kinetics and synergistic effect for anaerobic co-digestion of sewage sludge", J. of KSWM, 29(7), pp. 624-633. (2012).
  12. Park, J. K., Jeong, S. R., Kang, J. H., Ahn, Y. M., Jin, H. E. and Lee, N. H., "A study on optimization conditions for anaerobic co-digestion of food wastes with livestock wastes", J. of KSWM, 29(4), pp. 356-364. (2012).
  13. Faour, A. A., Reinhart, D. R. and Huaxin, Y., "First-order kinetic gas generation model parameters for wet landfills", Waste Manage., 27(7), pp. 946-953. (2007). https://doi.org/10.1016/j.wasman.2006.05.007
  14. Shelton. D. R. and Tiedje. J. M., "General Method for determining anaerobic biodegradation potential", Appl. Environ. Microbiol., 47(4), pp. 850-857. (1984).
  15. Shin, H. S., Song, Y. C. and Bae, B. U., "Anaerobic degradation characteristics of organic waste component(I) : methane conversion, kinetics, particle size effect", J. of KSWE, 17(3), pp. 237-245. (1995).
  16. Cho, H. Y., Yousef, A. E. and Sastry, S. K., "Growth kinetics of Lactobacillus acidophilus under ohmic heating", Biotechnol. Bioeng., 49(3), pp. 334-340. (1996).
  17. Zwietering, M. H., Jongenburger, I., Rombouts, F. M. and van't Riet, K., "Modeling of the bacterial growth curve", Appl. Environ. Microbiol., 56(6), pp. 1875-1881. (1990).
  18. Fan, Y., Wang, Y., Qian, P. Y. and Gu J. D., "Optimization of phthalic acid batch biodegradation and the use of modified Richards model for modelling degradation", Int. Biodeterior. Biodegr., 53(1) , pp. 57-63. (2004). https://doi.org/10.1016/j.ibiod.2003.10.001
  19. Burnham, K. P. and Anderson, D. R., "Model selection and multimodel inference: a practical information-theoretic approach", Springer, New York, (2002).
  20. Park, J. K., Kang, J. H., Ban, J. K. and Lee, N. H., "Developments of greenhouse gas generation models and estimation method of their parameters for solid waste landfills", J. of KSCE, 32(6B), pp. 399-406. (2012).