• Title/Summary/Keyword: First-order kinetic equation

Search Result 75, Processing Time 0.027 seconds

Statistical Evaluation of Sigmoidal and First-Order Kinetic Equations for Simulating Methane Production from Solid Wastes (폐기물로부터 메탄발생량 예측을 위한 Sigmoidal 식과 1차 반응식의 통계학적 평가)

  • Lee, Nam-Hoon;Park, Jin-Kyu;Jeong, Sae-Rom;Kang, Jeong-Hee;Kim, Kyung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.2
    • /
    • pp.88-96
    • /
    • 2013
  • The objective of this research was to evaluate the suitability of sigmoidal and firstorder kinetic equations for simulating the methane production from solid wastes. The sigmoidal kinetic equations used were modified Gompertz and Logistic equations. Statistical criteria used to evaluate equation performance were analysis of goodness-of-fit (Residual sum of squares, Root mean squared error and Akaike's Information Criterion). Akaike's Information Criterion (AIC) was employed to compare goodness-of-fit of equations with same and different numbers of parameters. RSS and RMSE were decreased for first-order kinetic equation with lag-phase time, compared to the first-order kinetic equation without lag-phase time. However, first-order kinetic equations had relatively higher AIC than the sigmoidal kinetic equations. It seemed that the sigmoidal kinetic equations had better goodness-of-fit than the first-order kinetic equations in order to simulate the methane production.

Adsorption Kinetic Study of Ruthenium Complex Dyes onto TiO2 Anodes for Dye-sensitized Solar Cells (DSSCs) (염료감응 태양전지용 루테늄 금속착체 염료의 이산화티타늄 전극에 대한 동적 흡착 연구)

  • An, Byeong-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.929-934
    • /
    • 2011
  • The adsorption kinetic study of ruthenium complex, N3, onto nanoporous titanium dioxide ($TiO_2$) photoanodes has been carried out by measuring dye uptake in-situ. Three simplified kinetic models including a pseudo first-order equation, pseudo second-order equation and intraparticle diffusion equation were chosen to follow the adsorption process. Kinetic parameters, rate constant, equilibrium adsorption capacities and related coefficient coefficients for each kinetic model were calculated and discussed. It was shown that the adsorption kinetics of N3 dye molecules onto porous $TiO_2$ obeys pseudo second-order kinetics with chemisorption being the rate determining step. Additionally the heterogeneous surface and the pore size distribution of porous $TiO_2$ adsorbents were also discussed.

The Removal Kinetics of Mn and Co from the Contaminated Solutions by Various Calcium Carbonate Surfaces (다양한 방해석 표면에 대한 Mn과 Co 흡착 기작)

  • H., Yoon;Ko, K.S.;Kim, S.J.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.219-222
    • /
    • 2004
  • Removal characteristics of Mn and Co was studied from the contaminated solutions via surface reaction with various calcium carbonate (calcite). Synthetic calcium carbonates which has different surface morphology as well as surface areas were prepared by a spontaneous precipitation method and used. Mn and Co removal behavior by the different solid surface demonstrate characteristic sorption behaviors depend on the type of calcite used, such as surface area or surface morphology. Calcium carbonate crystals (mostly calcite) which exhibit complicated surface morphology (c-type) shows strong sorption affinity for Mn and Co removal via sorption than on the a-type or b-type calcite crystals of less complicated surfaces. The applicability of two kinetic models, the pseudo-first-order kinetic equation and the Elovich kinetic model was examined on these sorption behavior. Elovich kinetic model was found more suitable to explain the very early stage adsorption kinetics, while the pseudo-first-order kinetic equation was successfully fitted for the adsorption kinetics after 50 hours.

  • PDF

Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound

  • Gholitabar, Soheila;Tahermansouri, Hasan
    • Carbon letters
    • /
    • v.22
    • /
    • pp.14-24
    • /
    • 2017
  • Carboxylated multi-wall carbon nanotubes (MWCNTs-COOH) have been used as efficient adsorbents for the removal of picric acid from aqueous solutions under stirring and ultrasound conditions. Batch experiments were conducted to study the influence of the different parameters such as pH, amount of adsorbents, contact time and concentration of picric acid on the adsorption process. The kinetic data were fitted with pseudo-first order, pseudo-second-order, Elovich and intra-particle diffusion models. The kinetic studies were well described by the pseudo-second-order kinetic model for both methods. In addition, the adsorption isotherms of picric acid from aqueous solutions on the MWCNTs were investigated using six two-parameter models (Langmuir, Freundlich, Tempkin, Halsey, Harkins-Jura, Fowler-Guggenheim), four three-parameter models (Redlich-Peterson, Khan, Radke-Prausnitz, and Toth), two four-parameter equations (Fritz-Schlunder and Baudu) and one five-parameter equation (Fritz-Schlunder). Three error analysis methods, correlation coefficient, chi-square test and average relative errors, were applied to determine the best fit isotherm. The error analysis showed that the models with more than two parameters better described the picric acid sorption data compared to the two-parameter models. In particular, the Baudu equation provided the best model for the picric acid sorption data for both methods.

Transition Rates in a Bistable System Driven by Singular External Forces

  • Cheol-Ju Kim;Dong Jae Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.95-100
    • /
    • 1993
  • A noise-induced transition is presented for a bistable system subjected to a multiplicative random force, which is singular at the unstable state. The stationary probability distribution is obtained from the Fokker-Planck equation and the effects of the singularity is analyzed. On the basis of noise-induced phase transition with Gaussian white noise, the relaxation time and the transition rate of the system are evaluated up to the first order correction of D. In the parameter region v < l, the transition rates decrease as the exponent v goes to 1 and as the coefficient of the linear term of the kinetic equation increases.

Applicability of adsorption kinetic model for cation/anion for chitosan hydrogel bead (키토산비드를 이용한 양이온/음이온의 흡착모델 적용)

  • An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.3
    • /
    • pp.205-213
    • /
    • 2019
  • Batch adsorption tests were performed to evaluate the applicability of adsorption kinetic model by using hydrogel chitosan bead crosslinked with glutaraldehyde (HCB-G) for Cu(II) as cation and/or phosphate as anion. Pseudo first and second order model were applied to determine the sorption kinetic property and intraparticle and Boyd equation were used to predict the diffusion of Cu(II) and phosphate at pore and boundary-layer, respectively. According to the value of theoretical and experimental uptake of Cu(II) and phosphate, pseudo second order is more suitable. On comparison with the value of adsorption rate constant (k), phosphate kinetic was 2-4 times faster than that of Cu(II) at any experimental condition indicating the electrostatic interaction between ${NH_3}^+$ and phosphate is dominated at the presence of single component. However, when Cu(II) and phosphate simultaneously exist, the value of k for phosphate was sharply decreased and then the difference was not significant. Both diffusion models confirmed that the sorption rate was controlled by film mass transfer at the beginning time (t < 3 hr) and pore diffusion at next time section (t > 6 hr).

Equilibrium, Kinetic and Thermodynamic Parameter Studies on Adsorption of Acid Yellow 14 Using Activated Carbon (활성탄을 이용한 Acid Yellow 14 흡착에 대한 평형, 동역학 및 열역학 파라미터의 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.255-261
    • /
    • 2016
  • Adsorption experiments of Acid Yellow 14 dye using activated carbon were carried out as function of adsorbent dose, pH, initial concentration, contact time and temperature. The equilibrium adsorption data were analyzed by Langmuir, Freundlich and Temkin isotherm model. The experimental data were best represented by Freundlich isotherm model. Base on the estimated Freundlich constant (1/n=0.129~0.212) and Langmuir separation factor ($R_L=0.202{\sim}0.243$), this process could be employed as effective treatment method. The heat of adsorption of Temkin isotherm model was 5.101~9.164 J/mol indicated that the adsorption process followed a physical adsorption. Adsorption kinetics experimental data were modeled using the pseudo-first-order and pseudo-second-order kinetic equation. It was shown that pseudo-second-order kinetic equation could best describe the adsorption kinetics. Base on the negative Gibbs free energy (-4.81~-10.33 kJ/mol) and positive enthalpy (+78.59 kJ/mol) indicate that the adsorption is spontaneous and endothermic process.

Studies on the Polarographic Kinetic Currents for the First Order Reactions at the Droping Mercury Electrode (水銀滴下電極에서 一次反應에 對한 포라로그라프電流에 關한 硏究)

  • Kim, Hwang-Am;Chin, Chang-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.1
    • /
    • pp.14-18
    • /
    • 1962
  • Solution to the diffusion layer for the first order reaction at a droping mercury electrode (D.M.E.) is presented. Equations are derived for polarographic currents for the reactions at the D.M.E. A factor which is applicable to the D.M.E. is derived, when we use the equations of the polarographic currents for the reactions at a plane electrode(P.E.), and the rate constants of the backward reactions are negligibly small. Polarographic currents from a combination of diffusions and reactions are obtained at the D.M.E. with special approximation. Rate constant for the reaction of ferrous ion with hydrogen-peroxide is determined at the D.M.E.,using the data of Kolthoff and Perry. The agreement of the equation with the data of Kolthoff and Perry for the kinetic current of ferric ion in the presence of hydrogen-peroxide is good. Ratios of diffusion layer at the D.M.E. to the diffusion layer at the P.E. are discussed and show that, when the rate constants of the backward reactions for the first order reactions are larger than 1/0.05 sec-1. and drop-time about 3 sec., these ratioes are about one.

  • PDF

Novel adsorption model of filtration process in polycarbonate track-etched membrane: Comparative study

  • Adda, Asma;Hanini, Salah;Abbas, Mohamed;Sediri, Meriem
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.479-487
    • /
    • 2020
  • Current assumptions are used in the formulation of pseudo-first (PFO) and second-order (PSO) models to describe the kinetic data of filtration based on ideal operating conditions. This paper presents a new model developed with pseudo nth order and based on real assumption. A comparison was performed between PFO, PSO and the new model to highlight their performance and the optimisation of the pseudo-order equation, using MATLAB software. Adsorption characteristic of bovine serum albumin adsorption on the track-etched membrane are used as a medium based on protein filtration data were extracted from the literature for different concentrations to demonstrate the comparison between PFO/PSO and the new model. The pseudo first and second-order kinetic models were applied to test the experimental data and they did not provide reasonable values. The results show that the predicted values are consistent with experimental values giving a good correlation coefficient R2 = 0.997 and a minimum root mean squared error RMSE = 0.0171. Indeed, the experimental results follow the new model and the optimal pseudo equation order n = 1.115, the most suitable curves for the new model. As a result, we used different experimental adsorption data from the literature to examine and check the applicability and validity of the model.

Removal of Cobalt Ion in Aqueous Solution Using Zeolitic Materials Synthesized from Jeju Volcanic Rocks (제주 화산석으로 합성한 제올라이트 물질을 이용한 용액 중의 Co 이온 제거)

  • Cho, Eunnim;Lee, Chang-Han;Kim, Moon il
    • Journal of Environmental Science International
    • /
    • v.30 no.9
    • /
    • pp.719-726
    • /
    • 2021
  • In this study, zeolitic materials were synthesized from Jeju Volcanic Rocks (JVR) using a fusion/hydrothermal method at NaOH/JVR ratios of 0.6 and 1.2. The crystallinities of the zeolitic materials at NaOH/JVR ratios of 0.6 and 1.2 were 25.5% and 59.0%, respectively. It was confirmed through the SEM image that the zeolitic materials covered the zeolite particle with a cube-shaped crystals. The Co ions adsorption by the zeolitic materials were to reach the adsorption equilibrium at 120 min. It could be better simulated in the pseudo-second order adsorption kinetic equation than in the pseudo-first order adsorption kinetic equation. The adsorption capacities (qm) of Co ions could be to estimate Langmuir isotherm better than Freundlich isotherm. The maximum adsorption capacities (qm) at NaOH/JVR ratios of 0.6 and 1.2 were 55.3 mg/g and 68.7 mg/g, respectively. It was found that there was a high correlation between the crystallinity of zeolitic materials and the adsorption capacity of Co ions adsorption.