• Title/Summary/Keyword: CMCase activity

Search Result 140, Processing Time 0.026 seconds

Purification and Characterization of Carboxymethyl Cellulase from Lampteromyces japonicus (Lampteromyces japonicus가 생산하는 Carboxymethyl Cellulase의 정제 및 특성)

  • Yoo, Kwan-Hee;Kim, Jun-Ho;Chang, Hyung-Soo
    • The Korean Journal of Mycology
    • /
    • v.32 no.2
    • /
    • pp.125-129
    • /
    • 2004
  • A carboxymethyl cellulase (CMCase) bas been isolated and purified from Lampteromyces japonicus. The molecular weight of CMCase was estimated to be 42 kDa by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. The maximum activity of the purified CMCase was observed at pH 6.0 and $30^{\circ}C$, and stable for pH 4 to 7 to maintain 40% activity. The CMCase activity was activated by $Al_{2}(SO_{4})_{3}$, and inhibited by SDS. Also, the enzyme activity was decreased by the addition of ethylene diamine tetraacetic acid (EDTA), suggesting that the purified CMCase is metalloenzyme.

Purification and Characterization of Carboxymethyl Cellulase from Loweporus roseoalbus (Loweporus roseoalbus가 생산하는 Carboxymethyl Cellulase의 정제 및 특성)

  • Chang, Hyung-Soo;Kim, Jun-Ho;Yoo, Kwan-Hee
    • The Korean Journal of Mycology
    • /
    • v.33 no.2
    • /
    • pp.75-80
    • /
    • 2005
  • A carboxymethyl cellulase (CMCase) has been purified from Loweporus roseoalbus. The molecular weight of the purified CMCase was estimated to be 28.5 kDa by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. The maximum activity of the purified CMCase was observed at pH 4.0 and $30^{\circ}C$, and stable for pH 3 to 5 to maintain 60% activity. The CMCase activity was activated by SDS and inhibited by PMSF and 1,10-phenanthroline. The enzyme activity was also decreased by the addition of ethylene diamine tetraacetic acid (EDTA), suggesting that the purified CMCase is metalloenzyme.

Purification and Characterization of Carboxymethyl Cellulase from Stropharia rugosoannulata (독청버섯아재비 균주가 생산하는 Carboxymethyl Cellulase의 정제 및 효소학적 특성)

  • Yoo, Kwan-Hee;Chang, Hyung-Soo
    • The Korean Journal of Mycology
    • /
    • v.30 no.2
    • /
    • pp.113-118
    • /
    • 2002
  • A Carboxymethyl Cellulase (CMCase) has been isolated and purified from the edible mushroom, Stropharia rugosoannulata. The molecular weight of CMCase was estimated to be 54 kDa by SDS polyacryl amide gel electrophoresis. The maximum activity of the purified CMCase was observed at pH 4.0 and $40^{\circ}C$, and stable for pH 3.0 to 11.0 to maintain 40% activity. The CMCase activity was activated by $AgNO_{3},\;MgSO_{4},\;and\;KCl$. However, its activity was inhibited by 1,10-phenanthroline, KCN and L-cysteine. Also, the enzyme activity was decreased by the addition of EDTA, suggesting that the purified CMCase is metalloenzyme.

Isolation and characterization of Bacillus sp. KD1014 producing carboxymethyl-cellulase (Isolation and Characterization of Bacillus sp. KD1014 Producing Carboxymethyl-Cellulase)

  • Lee, Kyung Dong;Kim, Jong Ho;Kim Hoon
    • Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.305-310
    • /
    • 1996
  • A microorganism producing carboxymethyl-cellulase (CMCase) was isolated from 300 soil and compost samples. The isolate was identified as Bacillus sp. by $Biolog^{TM}$ test and fatty acid analysis, and named as Bacillus sp. KD1014. The isolate could degrade, in addition to CMC, various kinds of polysaccharides such as levan, xylan, starch, and filter paper but hardly degrade microcrystalline Avicel. The optimum growth and CMCase production of the isolate was observed between 16-and 25 hr-culture at 45$^{\circ}C$ and pH 5.0. The maximum CMCase activity was observed at pH 4.5 and 6$0^{\circ}C$. The CMCase was found to bind to Avicel. The CMCase was internally cleaved as growth continued. When crude supernatant was used for activity staining, three major bands were detected on a native gel, however, only one major band was detected on a denaturating gel after removal of the detergent.

  • PDF

Secretion of Bacillus subtilis Endo-1,4-$\beta$-D-Glucanase in Yeast Using Promoter and Signal Sequence of Glucoamylase Gene (Glucoamylase 유전자의 promoter 와 분비신호서열을 이용한 Bacillus subtilis Endo-1-4$\beta$-D-Glucanase 의 효모에서 분비)

  • 안종석;강대욱;황인규;박승환;박무영;민태익
    • Korean Journal of Microbiology
    • /
    • v.30 no.5
    • /
    • pp.403-409
    • /
    • 1992
  • For the development of a glucanolytic yeast strain. the seceretion of endo-1.4-$\beta$-D-glucanase (CMCase) of Bacillus subtilis was performed in yeast using glucoamylase gene (STA1) of Saccharomyces diastaticus. A 1.7 kb-DNA fragment of STA1 gene containing authentic promoter, signal sequence, threonine serine-rich (TS) region and N-terminal region (98 amino acids) of mature glucoamylase was ligated to YEp 24. E. coli-yeast shuttle vector. And then. CMCase structural gene of B. subtilis was fused in frame with the 1.7 kb-DNA fragment of STA1 gene, resulting in recombinant plasmid pYES('24. Yeast transformant harboring pYESC24 had no CMCase activity. So. we deleted TS region and N-terminal region of mature glucoamylase existing between signal sequence and CMCase structural gene in pYESC24. consequently constructed recombinant plasmid pYESC11. The yeast transformed with the newly constructed recombinant plasmid pYESC11 efficiently secreted CMCase to extracellular medium. After 4 days culture. total CMCase activity of this transformant was 44.7 units/ml and over 93% of total CMCase activity was detected in culture supernatant.

  • PDF

Distribution of abiontic carboxymethylcellulase in relation to microbial growth and activity in forest soils (산림토양내 carboxymethylcellulase의 분포와 미생물의 생장 및 활성과의 상관에 대하여)

  • 이영하;하영칠;홍순우
    • Korean Journal of Microbiology
    • /
    • v.23 no.2
    • /
    • pp.147-156
    • /
    • 1985
  • Seasonal and vertical variations of abiontic soil carboxymethylcellulase (CMCase) activities were assessed every other month for a year in two contrasting forest soils and evaluated the relationships between soil CMCase activity and environmental parameters. In climax deciduous soil, variations in CMCase activities caused by differences in sampling time were greater than those caused by differences in soil depth. On the other hand, counter phenomenon was obserned in coniferous soil at the stage of development. Correlation analyses showed that soil CMCase activities were significantly (p>0.01) correlated with microbial respiration rates ($O_2$ uptake) and all of the microbial population sizes. From these results, it is suggested that determination of abiontic soil CMCase activity is an useful additional index for evaluating the overall microbial growth and activity in soils.

  • PDF

Purification and Characterization of Carboxymethyl Cellulase IV from Penicillium verruculosum (Penicillium verruculosum 으로부터 Carboxymethyl Cellulase IV 의 정제(精製) 및 특성(特性))

  • Kim, Jeong-Ho;Lee, Jae-Chang;Lee, Yong-Kyu;Kim, Kang-Hwa;Chun, Soon-Bai;Chung, Ki-Chul
    • The Korean Journal of Mycology
    • /
    • v.21 no.1
    • /
    • pp.28-37
    • /
    • 1993
  • An endo-type cellulase, carboxymethyl cellulase(CMCase) IV, was purified from culture filtrate of cellulolytic fungus Penicillium verruculosum. The CMCase IV was acidic glycoprotein having carbohydrate of 13% as glucose and pI value of 4.0. The CMCase IV was 52 KDa of molecular weight in SDS-polyacrylamide gel electrophoresis and have optimum temperature and pH of $50^{\circ}C$ and 5.0 for enzyme activity. The CMCase IV liberated glucose and cellobiose as major products of the enzyme against carboxymethyl cellulose(CMC) and seemed to has transglycosylation activity simultaneously. Cellulase activity staining(zymogram) showed that the cellulase components of P. verruculosum were not aggregated in the medium. P. vrttuculosum mRNA was translated in vitro and translation product by the mRNA coding for CMCase IV was identified by immunoprecipitation.

  • PDF

Optimization of Cellulase Production in Batch Fermentation by Trichoderma reesei

  • Yu, Xiao-Bin;Nam, Joo-Heon;Yun, Hyun-Shik;Koo, Yoon-Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.1
    • /
    • pp.44-47
    • /
    • 1998
  • Maximum cellulase production was sought by comparing the activities of the cellulases produced by different Trichoderma reesei strains and Aspergillus niger. Trichoderma reesei Rut-C30 showed higher cellulase activity than other Trichoderma reesei stains and Aspergillus niger that was isolated from soil. By optimizing the cultivation conditions during shake flask culture, higher cellulase production could be achieved. The FP(filter paper) activity of 3.7U/ml and CMCase (Carboxymethylcellulase) activity of 60U/ml were obtained from shake flask culture. When it was grown in 2.5L fermentor, where pH and DO levels are controlled, the enzyme activities were 133.35U/ml (CMCase) and 11.67U/ml(FP), respectively. Ammonium sulfate precipitation method was used to recover enzymes from fermentation broth. The dried cellulase powder showed 3074.9U/g of CMCase activity and 166.7U/g of FP activity with 83.5% CMCase recovery.

  • PDF

Cellulose 분해효소를 분비하는 Trichoderma sp. C-4 균주의 분리 및 특성

  • Son, Young-June;Sul, Ok-Ju;Chung, Dae-Kyun;Han, In-Seob;Choi, Yun-Jae;Jeong, Choon-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.4
    • /
    • pp.346-353
    • /
    • 1997
  • During the screening of cellulase producing microorganisms, a fungal strain C-4 was selected from etiolated leaves. Based on taxonomic studies, the fungus could be classified as a strain of Trichoderma sp. When the strain C-4 was cultured in Mandels' media at 28$circ$C for 6 days, the enzyme activities detected in broth were as follows: 8.2 U/ml (28.1 U/mg) of CMCase activity, 0.75 U/ml (2.58 U/mg) of Avicelase activity, 1.67 U/ ml (5.68 U/mg) of $eta$-glucosidase activity. The optimum pH for enzyme induction was 6.2. The crude enzyme retained 100% of its original CMCase activity at 50$circ$C for 1 hr (pH 5.0), and at 4$circ$C for 24 hrs (pH 5.0). There was no effect on the CMCase activity in the presence of 1 mM of CsCl, LiCl, MgCl$_{2}$, and FeCl$_{2}$, respectively. When the crude enzyme was treated with trypsin and chymotrypsin (2% W/w) for 10 minutes, the remaining CMCase activity was 70%, but there was no further loss of activity for 60 minutes treatment at 30$circ$C. The crude enzyme showed the synergism with rumen fluid for the hydrolysis of Avicel and CMC by 118% and 130%, respectively.

  • PDF

On the CMCase Activity from Two species of Trichosporon (Trichosporon의 CMCase 활성에 관하여)

  • 전순배;박종영
    • Korean Journal of Microbiology
    • /
    • v.17 no.4
    • /
    • pp.187-192
    • /
    • 1979
  • Dennis (1972) reported that Trichosporon cutaneum FRI-425 from the petioles of Pheum rhamponticum var, had showed the celluloytic activity. Chun (1977) also suggested that Trichoporon pullulons 225 isolated from the saline water of the Yeoung San River had a similar properties. However, the assay conditions for enzyme activity were not yet investigated. Thus, the present work was undertaken to examine some conditions for CMCase activity and at the same time to compare the activities of crude enzyme produce from above two species of Trichosporon pullulans. The results are as follows; 1. The maximum production of total reducing sugar by crude enzyme of Tr. pululans was after 30 minutes, whereas that of Tr. cutanuem FRI-425 was after 90 minutes. This fact showed that the reaction velocity of enzyme from Tr. pullulans 225 was more faster than that of Tr. cutaneum FRI-425. 2. Two species showed a similar trend to increase the production of reducing sugar in proportion to the increment in substrate concentration and to arrive at maximum level at lmg/ml of substrate concentration. However, Tr. pullulans 225 produced more $50{\mu}g$ of reducing sugar compared to Tr. cutaneum. 3. The optimum PH for CMCase activity is 5.0 for Tr. pullulans 225 as well as Tr. cutaneum FRI-425, and PH stability lie within the range of 6 and 8. In the activity and stability of enzyme on PH changes, enzyme of Tr. cutaneum FRI-425 was more unstable than that of TY. pullulans 225. 4. The optimum temperature for CMCase activity was $40^{\circ}C$, and enzyme activity from Tr. pullulans 225 was more sensitive to temperature changes compared with that of TY. cutaneum. The heat stability was within $40^{\circ}C$, but that was rapidly decreased above $40^{\circ}C$. In comparison of the heat stability for enzyme of Tr. cutaneum FRI-425 with that of Tr. pullulans 225 at the same temperature of $80^{\circ}C$, the former was some 10 percent more stable than the latter.

  • PDF