DOI QR코드

DOI QR Code

대규모해석을 활용한 수직형 배열회수 증기발생기의 안전설계에 관한 연구

Study on Safety Design of Vertical-Type Heat Recovery Steam Generator Based on Large-Scale Analysis

  • 투고 : 2011.11.15
  • 심사 : 2012.09.20
  • 발행 : 2012.12.01

초록

배열회수 증기발생기는 복합발전플랜트에서 사용되는 주요기기로서, 박판으로 제작된 대형구조물이며 열변형과 열피로에 매우 민감하다. 따라서 운전 중에 발생하는 열피로에 의한 파손을 예방하기 위하여 대규모해석 기반의 안전성 평가가 필요하다. 따라서 본 연구에서는 대규모해석을 수행하고 이를 활용하여 배열회수 증기발생기의 손상 메커니즘 분석 및 해결방안을 도출하고자 한다. 또한 이를 반영하여 열변형과 열피로를 예방하고 건전성을 확보할 수 있는 모델을 제안 및 검증하고자 한다. 이는 수직형 배열회수 증기발생기의 안전성 향상을 위한 기초자료로 활용된다.

A Heat Recovery Steam Generator(HRSG) is the main component of a Combined Cycle Power Plant(CCPP). It is a very large structure that is made from relatively thin metal sheets. Therefore, the structural integrity of an HRSG is very important to ensure safe operation during plant lifetime. In particular, thermal deformation and thermal fatigue have been revealed as the main causes of the mechanical degradation of an HRSG. In order to prevent unexpected damage, safety evaluation based on a large-scale analysis is necessary. Therefore, this study aims to improve the safety of HRSG by using Finite Element Analysis(FEA) results derived from large-scale analysis. Furthermore, the modified design is verified by comparing it with the original one. This result will be used as basic data for improving the safety of a vertical-type HRSG.

키워드

참고문헌

  1. Cha, H., Kim, K. J., Song, Y. S. and Kim, J. R., 2010, "Dynamic Simulation of HRSG System According to Start-up/Shutdown Curve," KSME Fall Conference, pp. 3744-3748.
  2. Lee, C. H., Kim, S. H. and Kim, J. H., 2000, "The Analysis of Dynamic Behavior for Horizontal Drum Type HRSG," KSME Fall Conference, pp. 645-650.
  3. Chong, C. H. and Song, J. I., 2008, "Effect on Thermal Performance of Superheater Module under Part Load Operation in HRSG," Journal of Energy Engineering, Vol. 17, No. 3, pp. 161-166.
  4. Kim, T. S., Lee, D. K., and Ro, S. T., 2000, "Analysis of Thermal Stress Evolution in the Steam Drum During Start-up of a Heat Recovery Steam Generator," Applied Thermal Engineering, Vol. 20, pp. 977-992. https://doi.org/10.1016/S1359-4311(99)00081-2
  5. Autodesk, 2009, "Autodesk Inventor User Manual," Autodesk Inc.
  6. Altair Engineering, 2008, "Hypermesh and Batchmesher," Altair Engineering.
  7. America Society of Mechanical Engineers, 2007, "ASME Code Sec.II - Materials," ASME Boiler and Pressure Vessel Code, New York.
  8. ANSYS, 2008, "Introduction of ANSYS ver. 12," ANSYS Inc.
  9. Lee, C. S., Chung, S. W., Shin, H. and Kim, S. J., 2005, "Virtual Material Characterization of 3D Orthogonal Woven Composite Materials by Large-Scale Computing," Journal of Composite Materials, Vol. 39, No. 10, pp. 851-863. https://doi.org/10.1177/0021998305048160
  10. Liu, Y., 2006, "A New Fast Multipole Boundary Element Method for Solving Large-Scale Two- Dimensional Elastostatic Problems," Internatonal Journal for Numerical Methods in Engineering, Vol. 65, pp. 863-881. https://doi.org/10.1002/nme.1474
  11. Kim, J. S., Lee, S. M., Lee, J. Y., Jeong, H. S. and Lee, S. M., 2012, "Development of Pre- and Post-Processing System for Supercomputing Based Large-Scale Structural Analysis," Society of CAD /CAM Engineers, Vol. 17, No. 2, pp. 123-131. https://doi.org/10.7315/CADCAM.2012.123
  12. Incropera, F. P. and Dewitt, D. P., 2002, "Fundamentals of Heat and Mass Transfer," 5th edition, Jhon Wiley & Sons, New York, pp. 491-495.
  13. Ludema., K. C., 1996, "Friction, Wear, Lubrication," CRC Press, New York, pp. 96-98.

피인용 문헌

  1. Process Modeling System of a Combined Cycle Plant for Steady State Simulation with Model Based Approach vol.53, pp.5, 2015, https://doi.org/10.9713/kcer.2015.53.5.545