DOI QR코드

DOI QR Code

Tensile Tests for Copper Thin Foils by Using DIC Method

DIC 법을 이용한 구리박막의 인장시험

  • Kim, Chung Youb (Division of Mechanical and Automotive Engineering, Chonnam Nat'l Univ.) ;
  • Song, Ji Ho (Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, Kyung Jo (Division of Mechanical and Automotive Engineering, Chonnam Nat'l Univ.)
  • 김정엽 (전남대학교 기계자동차공학부) ;
  • 송지호 (한국과학기술원 기계공학부) ;
  • 박경조 (전남대학교 기계자동차공학부)
  • Received : 2012.07.19
  • Accepted : 2012.08.20
  • Published : 2012.12.01

Abstract

In this study, tensile tests for 12-${\mu}m$-thick copper thin foils were performed by using the DIC method. The DIC method provided precise stress-strain curves for thin film materials, and a commercial inkjet printer can be simply and effectively used for printing speckle patterns on the specimen of Cu thin films whose surface contrast is too low to apply the DIC method. The mechanical properties of Cu thin foils obtained in this study are as follows: elastic modulus E = 89.2 GPa, 0.2% offset yield stress $S_{0.2%}$= 232.8 MPa, tensile strength $S_u$= 319.2 MPa, elongation at fracture ${\varepsilon}_f$=16.8 %, and Poisson's ratio ${\nu}$= 0.34.

본 연구에서는 DIC 법을 이용하여 두께 $12{\mu}m$ 의 구리박막에 대한 인장시험을 수행하였다. 시험결과 정밀한 응력-변형률 곡선의 시험결과를 얻을 수 있었으며, 특히 잉크젯프린터를 이용한 시험편 표면 스펙클패턴의 작성은 DIC 법을 적용하기가 어려운 시험편 표면의 콘트라스트가 낮은 경우에 유용하게 사용할 수 있을 것이다. 측정된 구리박막의 기계적 물성은 탄성계수 E = 89.2 GPa, 0.2% 오프셋 항복응력 $S_{0.2%}$= 232.8 MPa, 인장강도 $S_u$= 319.2 MPa, 파단연신률 ${\varepsilon}_f$= 16.8 %, Poisson 비 ${\nu}$= 0.34 의 결과를 얻었으며, 탄성계수는 알려진 벌크소재에 대한 결과보다는 작다.

Keywords

References

  1. Weihs, T. P., Hong, S., Bravman, J. C. and Nix, W. D., 1988, "Mechanical Deflection of Cantilever Microbeams: a New Technique for Testing the Mechanical Properties of Thin Films," J Mater Res, Vol.3, pp.931-942. https://doi.org/10.1557/JMR.1988.0931
  2. Schweitz, J. A., 1992, "Mechanical Characterization of Thin Films by Micromechanical Techniques," MRS Bull, XVII, pp.34-45.
  3. Beams, J. W., 1959, Structure and Properties of Thin Films, New York: Wiley, pp.183-192.
  4. Bromley, E. I., Randall, J. N., Flanders, D. C. and Mountain, R. W., 1983, "A Technique for the Determination of Stress in Thin Films," J Vac Sci Technol B, Vol.1, pp.1364-1366. https://doi.org/10.1116/1.582744
  5. Tsuchiya, T., Tabata, O., Sakata, J. and Taga, Y., 1998, "Specimen Size Effect on Tensile Strength of Surface Micromachined Polycrystalline Silicon Thin Films," J Microelectromech Syst, Vol.7, pp.106-113. https://doi.org/10.1109/84.661392
  6. Sharpe, W. N., Yuan, B. and Edwards, R. L., 1997, "A New Technique for Measuring the Mechanical Properties of Thin Films," J Microelectromech Syst, Vol.6, pp.193-199. https://doi.org/10.1109/84.623107
  7. Greek, S., Ericson, F., Johansson, S., Furtsch, M., Rump, A., 1999, "Micro Characterization of Thick Polysilicon Films: Young's Modulus and Fracture Strength Evaluated with Microstructure," J Micromech Microeng, Vol.9, pp.245-251. https://doi.org/10.1088/0960-1317/9/3/305
  8. Kim, C. Y., Song, J. H., and Lee, D. Y., 2009, "Development of a Fatigue Testing System for Thin Films," Int J Fatigue, Vol. 31, pp. 736-742. https://doi.org/10.1016/j.ijfatigue.2008.03.010
  9. Kim, C. Y. and Sharpe, W. N., 2010, "Development of a Fatigue Testing System for Micro-Specimens," Trans. of the KSME (A), Vol. 34, pp. 1201-1207.
  10. Pan, B., Qiam, K., Xie, H. and Anand, A., 2009, "Two-dimensional Digital Image Correlation for Inplane Displacement and Strain Measurement: A Review," Meas Sci Technol, Vol. 20, pp. 1-17.
  11. Han, S. W., Lee, S. J., Seo, K. J., Kim, J. H., Lee, H. J., 2006, "Measurement of Young's Modulus and Poisson's Ratio for Copper Thin Film Using Visual Image Tracing Method," Trans. of the KSME 2006, pp. 7-10.
  12. ASTM E08M-04, 2004, Annual book of ASTM standards, vol. 03.01. Philadelphia (PA), p. 419.
  13. Hwangbo, Y., Song, J. H., 2010, "Fatigue Life and Plastic Deformation Behavior of Electrodeposited Copper Thin Films," Mater. Sci. Eng. A, Vol. 527, pp. 2222-2232. https://doi.org/10.1016/j.msea.2010.01.016
  14. ASM Handbook, Vol. 2, Properties & Selection: Nonferrous Alloys and Special Purpose Materials, 1990, ASM International, Materials Park, OH,.
  15. Klein, M., Hadrboletz, A., Weiss, B., Khatibi, G., 2001, "Size Effect on the Stress-Strain, Fatigue and Fracture Properties of Thin Metallic Foils," Mater. Sci. Eng. A, Vol. 321, pp. 924-928. https://doi.org/10.1016/S0921-5093(01)01043-7

Cited by

  1. Effect of the Deformation State on the Mechanical Degradation of Cu Metal Films on Flexible PI Substrates During Cyclic Sliding Testing pp.2005-4149, 2018, https://doi.org/10.1007/s12540-018-0155-y