DOI QR코드

DOI QR Code

EPS Production, PHB Accumulation and Abiotic Stress Endurance of Plant Growth Promoting Methylobacterium Strains Grown in a High Carbon Concentration

  • Woo, Sung-Man (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Subramanian, Parthiban (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Ramasamy, Krishnamoorthy (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Joe, M. Melvin (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Sa, Tong-Min (Department of Environmental and Biological Chemistry, Chungbuk National University)
  • Received : 2012.07.17
  • Accepted : 2012.08.16
  • Published : 2012.08.31

Abstract

In this study, we compared growth pattern, floc yield, Exo-polysaccharides (EPS) production, Poly-${\beta}$-hydroxybutyrate (PHB) accumulation, resistance to osmotic and acid stress in Methylobacterium strains CBMB20, CBMB27, CBMB35, and CBMB110. Modified high C:N ratio medium denoted as HCN-AMS medium was used with a C:N ratio of 30:1. The HCN-AMS medium favored increased growth in all the studied strains. All Methylobacterium strains tested positive for EPS production and showed positive fluorescence with calcoflour stain. Elevated levels of EPS production from 4.2 to 75.0% was observed in HCN-AMS medium. Accumulation of PHB in HCN-AMS medium increased by 3.8, 36.7, and 12.0% in strains CBMB27, CBMB35, and CBMB110 respectively. Among the abiotic stresses, osmotic stress-induced growth inhibition of Methylobacterium strains was found to be lowered when grown in HCN-AMS medium. Likewise, growth inhibition due to acid stress at pH 5.0 was lower for strains grown in HCN-AMS medium compared to growth in AMS medium. Enhanced survivability under stress conditions may be attributed to the high EPS and PHB production at increased carbon concentration in the growth medium.

Keywords

References

  1. Alami, Y., W. Achouak, C. Marol, and T. Heulin. 2000. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl. Environ. Microbiol. 66:3393-3398. https://doi.org/10.1128/AEM.66.8.3393-3398.2000
  2. Alvarez, M.I., R.J. Sueldo, and C.A. Barassi. 1996. Effect of Azospirillum inoculation on coleoptile growth in wheat seedlings under water stress. Cereal Res. Commun. 24:101-107.
  3. Ayub Akbari, P.J. Swedko, H.D. Clark, W. Hogg, J. Lemelin, P. Magner, L. Moore, and D. Ooi. 2004. Detection of chronic kidney disease with laboratory reporting of estimated glomerular filtration rate and an educational program. Arch. Intern. Med. 164(16):1788-1792. https://doi.org/10.1001/archinte.164.16.1788
  4. Bahat-Samet, E., S. Castro-Sowinski. and Y. Okon. 2004. Arabinose content of extracellular polysaccharide plays a role in cell aggregation of Azospirrilum brasilense. FEMS Microbial. Lett. 237: 195-203.
  5. Bashan, Y. and G. Holguin. 1997. Azospirillum - plant relationships: environment and physiological advances. Can. J. Microbiol. 43:103-121. https://doi.org/10.1139/m97-015
  6. Bashan, Y. 1998. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol. Adv. 16:729-770. https://doi.org/10.1016/S0734-9750(98)00003-2
  7. Basile, D.V., M.R. Basile, Q.Y. Li, and W.A. Corpe. 1985. Vitamin B12-stimulated growth and development of Jungermannia leiantha Grolle and Gymnocolea inflata (Huds.) Dum (Hepaticae). Bryologist. 88:77-81. https://doi.org/10.2307/3242585
  8. Breuer, U. and W. Babel. 1999. Methylobacterium rhodesianum produces poly-3-hydroxybutyrate and after mutagenesis in addition exopolysaccharides. Acta Biotechnol. 19:779-786.
  9. Burdman, S., E. Jurkevitch, B. Schnartsburd, M. Hampel, and Y. Okon. 1998. Aggregation in Azospirillum brasilense: effects of chemical and physical factors and involvement of extracellular components. Microbiol. 144:1989-1999 https://doi.org/10.1099/00221287-144-7-1989
  10. Burdman, S., E. Jurkevitch, M.E. Soria-Dia, A.M.G. Serrano, and Y. Okon. 2000. Extracellular polysaccharide composition of Azospirillum brasilense and its relation to cell aggregation. FEMS Microbiol. Lett. 189:259-264. https://doi.org/10.1111/j.1574-6968.2000.tb09240.x
  11. Catroux, G., A. Hartmann, C. Revellin. 2001. Trends in rhizobial inoculant production and use. Plant Soil 230:21-30. https://doi.org/10.1023/A:1004777115628
  12. Celik, G.Y., B. Aslim, and Y. Beyatli. 2008. Characterization and production of the exopolysaccharide (EPS) from Pseudomonas aeruginosa G1 and Pseudomonas putida G12 strains. Cabohydrate Polymers. 73:178-182. https://doi.org/10.1016/j.carbpol.2007.11.021
  13. Choi, H.H. 1998. An explicit formula of linear sliding surfaces for a class of uncertain dynamic systems with mismatched uncertainties. Automatica 34:1015-1020. https://doi.org/10.1016/S0005-1098(98)00042-9
  14. Corpe, W.A. 1985. A method for detecting methylotrophic bacteria on solid surfaces. J. Microbiol. Methods 3:215-221. https://doi.org/10.1016/0167-7012(85)90049-1
  15. Corpe, W.A. and S. Rheem. 1989. Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol. Ecol. 62:243-250. https://doi.org/10.1111/j.1574-6968.1989.tb03698.x
  16. Dana, J.R., and L.J. Shimkets. 1993. Regulation of cohesion dependent cell interactions in Myxococcus xanthus. J. Bacteriol. 175:3636-3647.
  17. Del Gallo M, M. Negi, and C.A. Neyra. 1989. Calcofluor- and lectin-binding exocellular polysaccharides of Azospirillum brasilense and Azospirillum lipoferum. J. Bacteriol. vol. 171 no. 6:3504-3510.
  18. Gallego, V., M.T. Garcia, and A. Ventosa, 2006. Methylobacterium adhaesivum sp. nov., a methylotrophic bacterium isolated from drinking water. Int. J. Syst. Evol. Microbiol. 56:339-342. https://doi.org/10.1099/ijs.0.63966-0
  19. Gomez, K.A. and A.A. Gomez. 1984. Statistical procedures for agricultural research, 2nd ed. (Chichester, UK: John Wiley and Sons).
  20. Green, P. N. 2001. Methylobacterium. In The Prokaryotes, 3rd edn, release 3.5. Edited by M. Dworkin. New York: Springer.
  21. Holland M.A. and J.C. Polacco. 1994. PPFMs and other contaminants: is there more to plant physiology than just plant Annu. Rev. Plant Physiol. Plant Mol. Biol. 45:197-209. https://doi.org/10.1146/annurev.pp.45.060194.001213
  22. Idris, R., R. Trifonova, M. Puschenreiter, W.W. Wenzel, and A. Sessitsch. 2004. Bacterial communities associated with flowering plants of the Ni hyper accumulator Thaspi goesingense. Appl. Environ. Microbiol. 70:2667-2677. https://doi.org/10.1128/AEM.70.5.2667-2677.2004
  23. Kaci, Y., A. Heyraud, M. Barakat, and T. Heulin. 2005. Isolation and identification of an EPS producing Rhizobium strain from arid soil (Algeria): characterization of its EPS and the effect of inoculation on wheat rhizosphere soil structure. Res. Microbiol. 156:522-531. https://doi.org/10.1016/j.resmic.2005.01.012
  24. Kadouri, D., E. Jurkevitch, and Y. Okon. 2003. Involvement of the reserve material poly-beta-hydroxybutyrate in Azospirillum brasilense stress endurance and root colonization. Appl. Environ. Microbiol. 69:3246-3253.
  25. Karr, D.B., J.K.Waters and D. W. Emerich. 1983. Analysis of poly-ß-hydroxybutyrate in Rhizobium japonicum bacteroids by ion-exclusion high-pressure liquid chromatography and UV detection. Appl. Environ. Microbial. 46, 1339- 1344.
  26. Koenig, R.L., Morris, R.O. and Polacco, J.C. 2002. tRNA is the source of low-level trans-zeatin production in Methylobacterium spp.. J Bacteriol. 184: 1832-1842. https://doi.org/10.1128/JB.184.7.1832-1842.2002
  27. Knief, C., L. Frances, F. Cantet, and J.A. Vorholt. 2008. Cultivation-independent characterization of Methylobacterium populations in the plant phyllosphere by automated ribosomal intergenic spacer analysis. Appl. Environ. Microbiol. 74:2218-2228. https://doi.org/10.1128/AEM.02532-07
  28. Lopez-Cortes, A., A. Lanz-Landazuri, and J.Q. Garcia-Maldonado. 2008. Screening and isolation of PHB-producing bacteria in a polluted marine microbial mat. Microb. Ecol. 56:112-120. https://doi.org/10.1007/s00248-007-9329-8
  29. Madhaiyan, M., B.Y. Kim, S. Poonguzhali, S.W. Kwon, M.H. Song, J.H. Ryu, S.J. Go, B.S. Koo, and T.M. Sa. 2007. Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively,ethylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. Int. J. Syst. Evol. Microbiol. 57:326-331. https://doi.org/10.1099/ijs.0.64603-0
  30. Madhaiyan, M., S. Poonguzhali, V.S. Saravanan, K. Hari, and T.M. Sa. 2006. Influence of pesticides on the growth rate and plant-growth promoting traits of Gluconacetobacter diazotrophicus. Pestic. Biochem. Physiol. 84:143-154. https://doi.org/10.1016/j.pestbp.2005.06.004
  31. Madi, L. and Y. Henis. 1989. Aggregation in Azospirillum brasilense cd.: Conditions and factors involved in cell-to-cell adhesion. Plant Soil 115:89-98. https://doi.org/10.1007/BF02220698
  32. Monier, J.M. and S.E. Lindow. 2003. Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces. Proc Natl Acad Sci USA. 100(26): 15977-15982. https://doi.org/10.1073/pnas.2436560100
  33. Neyra, C.A., L.A. Atkinson, and O. Olubayi. 1995. Coaggregation of Azospirillum with other bacteria: basis for functional diversity. In: Fendrik I, Del Gallo M, Vanderleyden J, de Zamaroczy M (eds) Azospirillum VI and related microorganisms, genetics physiology ecology. NATO ASI series, series G. springer. Berlin Heidelberg New York. 429-439.
  34. Omer, Z.S., R. Tombolini, A. Broberg, and B. Gerhardson. 2004. Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regul. 43:93-96. https://doi.org/10.1023/B:GROW.0000038360.09079.ad
  35. Ramaswamy, S., M. Dworkin, and J. Downard. 1997. Identification and characterization of Myxococcus xanthus mutants deficient in calcofluor white binding. J. Bacteriol. 179:2863-2871.
  36. Reusch, R.N. and H.L. Sadoff. 1983. D-(-) Poly-$\beta$-hydroxybutyrate in membranes of genetically competent bacteria. J. Bacteriol. 156:778-788.
  37. Sadasivan, L. and C.A. Neyra. 1985. Flocculation in Azospirillum brasilense and Azospirillum lipoferum: exopolysaccharides and cyst formation. J. Bacterial. 163:716-723.
  38. Schauer, S. and U. Kutschera. 2008. Methylotrophic bacteria on the surfaces of field-grown sunflower plants: a biogeographic perspective. Theory Biosci.. 127:23-29. https://doi.org/10.1007/s12064-007-0020-x
  39. Schauer S., P. Kampfer, S. Wellner, C. Spröer, and U. Kutschera. 2011. Methylobacterium marchantiae sp. nov. a pinkpigmented, facultatively methylotrophic bacterium isolated from the thallus of a liverwort. Int. J. Syst. Evol. Microbiol. 61:870-876. https://doi.org/10.1099/ijs.0.021915-0
  40. Sullivan. B.D., M.R. Dana, and D.A. Sullivan. 2001. Influence of aging on the polar and neutral lipid profiles in human meibomian gland secretions. Invest. Ophthalmol. Vis. Sci.. 124(9):1286-1292.
  41. Trotsenko, Y.A., Ivanova, E.G. and Doronina, N.V. 2001. Aerobic methylotrophic bacteria as phytosymbionts. Mikrobiologiya. 70: 725-736.
  42. Van Elsas, J.D. and C.E. Heijnen. 1990. Methods for the introduction of bacteria in soil: a review. Biol. Fertil. Soils 10:127-33. https://doi.org/10.1007/BF00336248
  43. Wei Y.H, W.C. Chen, C.K. Huang, H.S. Wu, Y.M. Sun, C.W. Lo, and O.M. Janarthanan. 2011. Screening and Evaluation of Polyhydroxybutyrate-Producing Strains from Indigenous Isolate Cupriavidus taiwanensis Strains. Int. J. Mol. Sci.. 12:252-265. https://doi.org/10.3390/ijms12010252

Cited by

  1. Aerobic methylobacteria as promising objects of modern biotechnology (Review) vol.51, pp.2, 2015, https://doi.org/10.1134/S0003683815020052