DOI QR코드

DOI QR Code

Spore Associated Bacteria (SAB) of Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth Promoting Rhizobacteria (PGPR) Increase Nutrient Uptake and Plant Growth Under Stress Conditions

  • Gopal, Selvakumar (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Chandrasekaran, Murugesan (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Shagol, Charlotte (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Kim, Ki-Yoon (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
  • Received : 2012.07.18
  • Accepted : 2012.08.13
  • Published : 2012.08.31

Abstract

Microorganisms present in the rhizosphere soil plays a vital role in improving the plant growth and soil fertility. Many kinds of fertilizers including chemical and organic has been approached to improve the productivity. Though some of them showed significant improvement in yield, they failed to maintain the soil properties. Rather they negatively affected soil eventually, the land became unsuitable for agricultural. To overcome these problems, microorganisms have been used as effective alternative. For past few decades, plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) have been used as effective inoculants to enhance the plant growth and productivity. PGPR improves the plant growth and helps the plant to withstand biotic and abiotic stresses. AM fungi are known to colonize roots of plants and they increase the plant nutrient uptake. Spore associated bacteria (SAB) are attached to spore wall or hyphae and known to increase the AMF germination and root colonization but their mechanism of interaction is poorly known. Better understanding the interactions among AMF, SAB and PGPR are necessary to enhance the quality of inoculants as a biofertilizers. In this paper, current knowledge about the interactions between fungi and bacteria are reviewed and discussed about AMF spore associated bacteria.

Keywords

References

  1. Abdel Latef, A.A.H., and H. Chaoxing. 2011. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci. Hortic. 127:228-233. https://doi.org/10.1016/j.scienta.2010.09.020
  2. Abdel Rahman, S.S.A., A.A.S. Abdel-Kader, and S.E. Khalil. 2011. Response of three sweet basil cultivars to inoculation with Bacillus subtilis and arbuscular mycorrhizal fungi under salt stress conditions. Nature and Science 9(6):93-111.
  3. Adesemoye, A.O., H.A. Torbert, and J.W. Kloepper. 2008. Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can. J. Microbiol. 54:876-886. https://doi.org/10.1139/W08-081
  4. Akkopru, A. and S. Demir. 2005. Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J. Phytopathol. 153:544-550. https://doi.org/10.1111/j.1439-0434.2005.01018.x
  5. Alexander, T., R. Meier, R. Toth, and HC. Weber. 1988. Dynamics of arbuscule development and degeneration in mycorrhizas of Triticum aestivum L. and Avena sativa L. with reference to Zea mays L. New Phytol. 110:363-370. https://doi.org/10.1111/j.1469-8137.1988.tb00273.x
  6. Aliasgharzadeh, N., N. Saleh Rastin, H. Towfighi, and A. Alizadeh. 2001. Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11:119-122. https://doi.org/10.1007/s005720100113
  7. Al-Khaliel, A.S. 2010. Effect of salinity stress on mycorrhizal association and growth response of peanut infected by Glomus mosseae. Plant Soil Environ. 56:318-324.
  8. Anandham, R., K.H. Choi, P. Indira Gandhi, W.J. Yim, S.J. Park, K.A. Kim, M. Madhaiyan, and T.M. Sa. 2007. Evaluation of shelf life and rock phosphate solubilization of Burkholderia sp. in nutrient-amended clay, rice bran and rock phosphatebased granular formulation. World J. Microbiol. Biotechnol. 23:1121-1129. https://doi.org/10.1007/s11274-006-9342-y
  9. Artursson, V., R.D. Finlay, and J.K. Jansson. 2006. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ. Microbiol. 8(1):1-10. https://doi.org/10.1111/j.1462-2920.2005.00942.x
  10. Azcon, R. and E. EI-Atrash. 1997. Influence of arbuscular mycorrhizae and phosphorus fertilization on growth, nodulation and $N_{2}$ fixation ($^{15}N$) in Medicago sativa at four salinity levels. Biol. Fertil. Soils 24:81-86. https://doi.org/10.1007/BF01420225
  11. Bago, B., C. Azco N-Aguilar, A. Goulet, and Y. Piche. 1998. Branched absorbing structures (BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi. New Phytol. 139:375-388. https://doi.org/10.1046/j.1469-8137.1998.00199.x
  12. Bahrani, A., J. Pourreza, and M. Hagh Joo. 2010. Response of winter wheat to co-inoculation with Azotobacter and arbescular mycorrhizal fungi (AMF) under different sources of nitrogen fertilizer. Am-Euras. J. Agric. and Environ. Sci. 8 (1):95-103.
  13. Behn, O. 2008. Influence of Pseudomonas fluorescens and arbuscular mycorrhiza on the growth, yield, quality and resistance of wheat infected with Gaeumannomyces graminis. J. Plant Dis. Prot. 115(1):4-8.
  14. Bharadwaj, D.P., P. Lundquist, and S. Alstrom. 2008. Arbuscular mycorrhizal fungal spore-associated bacteria affect mycorrhizal colonization, plant growth and potato pathogens. Soil Biol. Biochem. 40:2494-2501. https://doi.org/10.1016/j.soilbio.2008.06.012
  15. Bharadwaj, D.P., S. Alström, and P.O. Lundquist. 2011. Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions. Mycorrhiza 22:437-447.
  16. Bhromsiri, C. and A. Bhromsiri. 2010. The effects of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi on the growth, development and nutrient uptake of different vetiver ecotypes. Thai Journal of Agricultural Science 43(4):239-249.
  17. Bianciotto, V., D. Minerdi, S. Perotto, and P. Bonfante. 1996. Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma 193:123-131. https://doi.org/10.1007/BF01276640
  18. Bianciotto, V., E. Lumini, L. Lanfranco, D. Minerdi, P. Bonfante, and S. Perotto. 2000. Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Appl. Environ. Microbiol. 66:4503-4509. https://doi.org/10.1128/AEM.66.10.4503-4509.2000
  19. Bisht, R., S. Chaturvedi, R. Srivastava, A.K. Sharma, and B.N. Johri. 2009. Effect of arbuscular mycorrhizal fungi, Pseudomonas fluorescens and Rhizobium leguminosarum on the growth and nutrient status of Dalbergia sissoo Roxb. Trop. Ecol. 50(2):231-242.
  20. Brundrett, M. 2004. Diversity and classification of mycorrhizal associations. Biol. Rev. 79:473-495. https://doi.org/10.1017/S1464793103006316
  21. Cantrell, I.C. and R.G. Linderman. 2001. Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant and Soil 233:269-281. https://doi.org/10.1023/A:1010564013601
  22. Cekic, F.O., S. Unyayar, and I. Ortas. 2012. Effects of arbuscular mycorrhizal inoculation on biochemical parameters in Capsicum annuum grown under long term salt stress. Turk. J. Bot. 36:63-72.
  23. Chabot, R., H. Antoun, and M.P. Cescas. 1996. Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar, phaseoli. Plant and Soil 184:311-321. https://doi.org/10.1007/BF00010460
  24. Chen, B. C., Y.G. Zhu, J. Duan, X.Y. Xiao, and S.E. Smith. 2007. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environ. Pollut. 147:374-380. https://doi.org/10.1016/j.envpol.2006.04.027
  25. Colla, G., Y. Rouphael, M. Cardarelli, M. Tullio, C.M. Rivera, and E. Rea. 2008. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol. Fertil. Soils 44:501-509. https://doi.org/10.1007/s00374-007-0232-8
  26. Cruz, A.F. and T. Ishii. 2011. Arbuscular mycorrhizal fungal spores host bacteria that affect nutrient biodynamics and biocontrol of soilborne plant pathogens. Biology Open 1:52-57.
  27. Cruz, A.F., S. Horii, S. Ochiai, A. Yasuda, and T. Ishii. 2007. Isolation and analysis of bacteria associated with spores of Gigaspora margarita. J. Appl. Microbiol. 104:1711-1717.
  28. Cuartero, J. and R. Fernaandez-Munaoz. 1999. Tomato and salinity. Sci. Hortic. 78:83-125.
  29. Daei, G., M.R. Ardekani, F. Rejali, S. Teimuri, and M. Miransari. 2009. Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J. Plant Physiol. 166:617-625. https://doi.org/10.1016/j.jplph.2008.09.013
  30. Edwards, S.G., J.P.W. Young, and A.H. Fitter. 1998. Interactions between Pseudomonas fluorescens biocontrol agents and Glomus mosseae, an arbuscular mycorrhizal fungus within the rhizosphere. FEMS Microbiol. Lett. 166:297-303. https://doi.org/10.1111/j.1574-6968.1998.tb13904.x
  31. Evelin, H., R. Kapoor, and B. Giri. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann. Bot. 104:1263-1280. https://doi.org/10.1093/aob/mcp251
  32. Feng, G., F. S. Zhang, X.L. Li, C.Y. Tian, C. Tang, and Z. Rengel. 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185-190. https://doi.org/10.1007/s00572-002-0170-0
  33. Gallagher, J.L. 1985. Halophytic crops for cultivation at seawater salinity. Plant Soil 89:323-336. https://doi.org/10.1007/BF02182251
  34. Giri, B. and K.G. Mukerji. 2004. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307-312. https://doi.org/10.1007/s00572-003-0274-1
  35. Glick, B.R., D.M. Penrose, and J. Li. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. theor. Biol. 190:63-68. https://doi.org/10.1006/jtbi.1997.0532
  36. Gonzalez-Chavez, M.C.A., R. Newsam, R. Linderman, J. Dodd, and J.M. Valdez-Carrasco. 2008. Bacteria associated with the extraradical mycelium of an arbuscular mycorrhizal fungus in an As/Cu polluted soil. Publicado como ARTICULO en Agrociencia 42:1-10.
  37. Gryndler, M., M. Vosatka, H. Hrselova, V. Catska, I. Chvatalova, and J. Jansa. 2002. Effect of dual inoculation with arbuscular mycorrhizal fungi and bacteria on growth and mineral nutrition of strawberry. J. Plant Nutr. 25(6):1341-1358. https://doi.org/10.1081/PLN-120004393
  38. Hildebrandt, U., K. Janetta, and H. Bothe. 2002. Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl. Environ. Microbiol. 68:1919-1924. https://doi.org/10.1128/AEM.68.4.1919-1924.2002
  39. Horii, S. and T. Ishii. 2006. Identification and function of Gigaspora margarita growth-promoting microorganisms. Symbiosis 41:135-141.
  40. Jaizme-Vega, M.C., A.S. Rodríguez-Romero, and L.A. Barroso Núñez. 2006. Effect of the combined inoculation of arbuscular mycorrhizal fungi and plant- growth promoting rhizobacteria on papaya (Carica papaya L.) infected with the root-knot nematode Meloidogyne incognita. Fruits 61:1-7. https://doi.org/10.1051/fruits:2006001
  41. Jastrow, J.D., R.M. Miller, and J. Lussenhop. 1998. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol. Biochem. 30(7):905-916. https://doi.org/10.1016/S0038-0717(97)00207-1
  42. Joseph, B., R.R. Patra, and R. Lawrence. 2007. Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). Int. J. Plant Prod. 2:141-152.
  43. Khan, A.G., C. Kuek, T.M. Chaudhry, C.S. Khoo, and W.J. Hayes. 2000. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197-207. https://doi.org/10.1016/S0045-6535(99)00412-9
  44. Kim, K., W. Yim, P. Trivedi, M. Madhaiyan, H.P. Deka Boruah, Md. Rashedul Islam, G. Lee, and T.M. Sa. 2010. Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper (Capsicum annuum L.). Plant Soil. 327:429-440. https://doi.org/10.1007/s11104-009-0072-4
  45. Kloepper, J.W., R. Lifshitz, and R.M. Zablotowicz. 1989. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7:39-43. https://doi.org/10.1016/0167-7799(89)90057-7
  46. Kumar, P., R.C. Dubey, and D.K. Maheshwari. 2012. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol. Res. 167:493-499. https://doi.org/10.1016/j.micres.2012.05.002
  47. Levy, A., A.J. Merritt, M.J. Maya, B.J. Chang, L.K. Abbott, and T.J.J. Inglis. 2009. Association between Burkholderia species and arbuscular mycorrhizal fungus spores in soils. Soil Biol. Biochem. 41:1757-1759. https://doi.org/10.1016/j.soilbio.2009.05.004
  48. Levy, A., J. Chang, L.K. Abbott, J. Kuo, G. Harnett, and T.J.J. Inglis. 2003. Invasion of spores of the arbuscular mycorrhizal fungus Gigaspora decipiens by Burkholderia spp. Appl. Environ. Microbiol. 69:6250-6256. https://doi.org/10.1128/AEM.69.10.6250-6256.2003
  49. Li, B., S. Ravnskov, G. Xie, and J. Larsen. 2007. Biocontrol of Pythium damping-off in cucumber by arbuscular mycorrhizaassociated bacteria from the genus Paenibacillus. Biocontrol 52:863-875. https://doi.org/10.1007/s10526-007-9076-2
  50. Liu, R., M. Dai, X. Wu, M. Li, and X. Liu. 2012. Suppression of the root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] on tomato by dual inoculation with arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria. Mycorrhiza 22:289-296. https://doi.org/10.1007/s00572-011-0397-8
  51. Ma, J.H., J.L. Yao, D. Cohen, and B. Morris. 1998. Ethylene inhibitors enhance in vitro root formation from apple shoot cultures. Plant Cell Reports 17:211-214. https://doi.org/10.1007/s002990050380
  52. Madhaiyan, M., S. Poonguzhali, B.G. Kang, Y.J. Lee, J.B. Chung, and T.M. Sa. 2010. Effect of co-inoculation of methylotrophic Methylobacterium oryzae with Azospirillum brasilense and Burkholderia pyrrocinia on the growth and nutrient uptake of tomato, red pepper and rice. Plant soil 328:71-82. https://doi.org/10.1007/s11104-009-0083-1
  53. Mahajan, S. and N. Tuteja. 2005. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 444:139-158. https://doi.org/10.1016/j.abb.2005.10.018
  54. Mansfeld-Giese, K., J. Larsen, and L. Bodker. 2002. Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiol. Ecol. 41:133-140. https://doi.org/10.1111/j.1574-6941.2002.tb00974.x
  55. Marulanda, A., J.M. Barea, and R. Azcon. 2006. An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microb. Ecol. 52:670-678. https://doi.org/10.1007/s00248-006-9078-0
  56. McMillen, B.G., S. Juniper, and L.K. Abbott. 1998. Inhibition of hyphal growth of a vesicular arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biol. Biochem. 30(13):1639-1646. https://doi.org/10.1016/S0038-0717(97)00204-6
  57. Meghvansi, M.K., K. Prasad, D. Harwani, and S.K. Mahna. 2008. Response of soybean cultivars toward inoculation with three arbuscular mycorrhizal fungi and Bradyrhizobium japonicum in the alluvial soil. Eur. J. Soil Biol. 44:316-323. https://doi.org/10.1016/j.ejsobi.2008.03.003
  58. Merzaeva, O.V. and I. G. Shirokikh. 2010. The Production of auxins by the endophytic bacteria of winter rye. Appl. Biochem. Microbiol. 46:44-50. https://doi.org/10.1134/S0003683810010072
  59. Miransari, M. 2009. Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol. 12:563-569.
  60. Nautiyal, C.S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170: 265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
  61. Parida, A.K. and A. B. Das. 2005. Salt tolerance and salinity effects on plants: a review. Ecotox. Environ. Safe. 60:324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  62. Paula, M.A., S. Urquiaga, J.O. Siqueira, and J. Dobereiner. 1992. Synergistic effects of vesicular-arbuscular mycorrhizal fungi and diazotrophic bacteria on nutrition and growth of sweet potato (Ipomoea batatas). Biol. Fertil. Soils 14:61-66. https://doi.org/10.1007/BF00336304
  63. Peterson, R.L., H.B. Massicotte, and L.H. Melville. 2004. Mycorrhizas: Anatomy and Cell Biology. National Research Council of Canada.
  64. Pfeiffer, C.M. and H.E. Bloss. 1988. Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular-arbuscular mycorrhiza and phosphorus fertilization. New phytol. 108:315-321. https://doi.org/10.1111/j.1469-8137.1988.tb04168.x
  65. Poonguzhali, S., M. Madhaiyan, and T.M. Sa. 2008. Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. J. Microbiol. Biotechnol. 18: 773-777.
  66. Rabie, G.H. 2005. Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater. Mycorrhiza 15:225-230. https://doi.org/10.1007/s00572-004-0345-y
  67. Rai, M.K. 2001. Current advances in mycorrhization in micropropagation. In vitro Cell. Dev. Biol. 37:158-167. https://doi.org/10.1007/s11627-001-0028-8
  68. Roesti, D., K. Ineichen, O. Braissant, D. Redecker, A. Wiemken, and M. Aragno. 2005. Bacteria associated with spores of the arbuscular mycorrhizal fungi Glomus geosporum and Glomus constrictum. Appl. Environ. Microbiol. 71:6673-6679. https://doi.org/10.1128/AEM.71.11.6673-6679.2005
  69. Rydlova, J., D. Puschel, R. Sudova, M. Gryndle, O. Mikanová, and M. Vosatka. 2011. Interaction of arbuscular mycorrhizal fungi and rhizobia: Effects on flax yield in spoil-bank clay. J. Plant Nutr. Soil Sci.174:128-134. https://doi.org/10.1002/jpln.201000130
  70. Sandhya, V., Sk. Z. Ali, M. Grover, G. Reddy, and B. Venkateswarlu. 2010. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul. 62:21-30. https://doi.org/10.1007/s10725-010-9479-4
  71. Sannazzaro, A.I., O.A. Ruiz, E.O. Alberto, and A.B. Menendez. 2006. Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant Soil 285:279-287. https://doi.org/10.1007/s11104-006-9015-5
  72. Sastry, M. S. R., A.K. Sharma, and B.N. Johri. 2000. Effect of an AM fungal consortium and Pseudomonas on the growth and nutrient uptake of Eucalyptus hybrid. Mycorrhiza 10:55-61. https://doi.org/10.1007/s005720000057
  73. Siddikee, M.A., B.R. Glick, P.S. Chauhan, W.Y. Yim, and T.M. Sa. 2011. Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol. Biochem. 49:427-434. https://doi.org/10.1016/j.plaphy.2011.01.015
  74. Siddikee, M.A., P.S. Chauhan, R. Anandham, Gwang-Hyun Han, and T.M. Sa. 2010. Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J. Microbiol. Biotechnol. 20(11):1577-1584. https://doi.org/10.4014/jmb.1007.07011
  75. Tajini, F., M. Trabelsi, and J.J. Drevon. 2011. Co-inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases P use efficiency for N2 fixation in the common bean (Phaseolus vulgaris L.) under P deficiency in hydroaeroponic culture. Symbiosis. 53:123-129. https://doi.org/10.1007/s13199-011-0117-3
  76. Tavares de Lima, A.S., T.F. Xavier, C.E. Pereira de Lima, J.P. Oliveira, A.C.E. Santo Mergulhao, and M.V. Barreto Figueiredo. 2011. Triple inoculation with Bradyrhizobium, Glomus and Paenibacillus on cowpea (vigna unguiculata [L.] Walp.) development. Braz. J. Microbiol. 42:919-926. https://doi.org/10.1590/S1517-83822011000300010
  77. Tester, M. and R. Davenport. 2003. $Na^{+}$ tolerance and $Na^{+}$ transport in higher plants. Ann. Bot. 91:503-527. https://doi.org/10.1093/aob/mcg058
  78. Tian, C.Y., G. Feng, X.L. Li, and F.S. Zhang. 2004. Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl. Soil Ecol. 26:143-148. https://doi.org/10.1016/j.apsoil.2003.10.010
  79. Toljander, J.F., V. Artursson, L.R. Paul, J.K. Jansson, and R.D. Finlay. 2005. Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol. Lett. 254:34-40.
  80. Tresner, H.D. and J.A. Hayes. 1971. Sodium chloride tolerance of terrestrial fungi. 22:210-213.
  81. Vivas, A., A. Marulanda, J.M. Ruiz-Lozano, J.M. Barea, and R. Azcon. 2003. Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13:249-256. https://doi.org/10.1007/s00572-003-0223-z
  82. Vivas, A., B. Biro, T. Nemeth, J.M. Barea, and R. Azcon. 2006a. Nickel-tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biol. Biochem. 38:2694-2704. https://doi.org/10.1016/j.soilbio.2006.04.020
  83. Vivas, A., B. Biro, J.M. Ruız-Lozano, J.M. Barea, and R. Azcon. 2006b. Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62:1523-1533. https://doi.org/10.1016/j.chemosphere.2005.06.053
  84. Weissenhorn, I. 2002. Mycorrhiza and salt tolerance of trees. Final report of partner 9.
  85. Wright, S. F. and A. Upadhyaya. 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil 198:97-107.
  86. Wu, Q.S., Y.N. Zou, W. Liu, X.F. Ye, H.F. Zai, and L.J. Zhao. 2010. Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. Plant Soil Environ. 56(10):470-475.
  87. Wu, S. C., K.C. Cheung, Y.M. Luo, and M.H. Wong. 2006. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ. Pollut. 140:124-135. https://doi.org/10.1016/j.envpol.2005.06.023
  88. Xavier, L.J.C. and J.J. Germida. 2003. Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol. Biochem. 35:471-478. https://doi.org/10.1016/S0038-0717(03)00003-8
  89. Zahir, Z.A., M. Zafar-ul-Hye, S. Sajjad, and M. Naveed. 2011. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for coinoculation with Rhizobium leguminosarum to improve growth, nodulation, and yield of lentil. Biol. Fertil. Soils 47:457-465. https://doi.org/10.1007/s00374-011-0551-7
  90. Zahran, H.H. 1999. Rhizobium-legume symbiosis and nitrogen fixation under sever conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63(4):968-989.
  91. Zarei, M., N. Saleh-Rastin, H. Ali Alikhani, and N. Aliasgharzadeh. 2006. Responses of lentil to co-inoculation with phosphatesolubilizing rhizobial strains and arbuscular mycorrhizal fungi. J. Plant Nutr. 29:1509-1522. https://doi.org/10.1080/01904160600837667
  92. Zhang, H.X. and E. Blumwald. 2001. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature 19:765-768. https://doi.org/10.1038/90824
  93. Zubek, S., K. Turnau, M. Tsimilli-Michael, and R.J. Strasser. 2009. Response of endangered plant species to inoculation with arbuscular mycorrhizal fungi and soil bacteria. Mycorrhiza 19:113-123. https://doi.org/10.1007/s00572-008-0209-y

Cited by

  1. Multifunctionality and diversity of culturable bacterial communities strictly associated with spores of the plant beneficial symbiont Rhizophagus intraradices vol.183, 2016, https://doi.org/10.1016/j.micres.2015.11.012
  2. Evaluation of comparative effects of arbuscular mycorrhiza ( Rhizophagus intraradices ) and endophyte ( Piriformospora indica ) association with finger millet ( Eleusine coracana ) under drought stress vol.81, 2017, https://doi.org/10.1016/j.ejsobi.2017.05.007