Right Amygdalar Laterobasal Subregional Differences in Healthy Adults with Different Novelty Seeking Tendencies

정상 성인에서 자극추구 기질에 따른 우측 편도체의 측기저 세부구조의 차이

  • Cho, Han-Byul (Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences) ;
  • Kim, Bin-Na (Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences) ;
  • Choi, Ji-Hye (Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences) ;
  • Jeon, Yu-Jin (Department of Psychiatry, Seoul National University College of Medicine) ;
  • Kim, Ji-Hyun H. (Department of Psychiatry, Seoul National University College of Medicine) ;
  • Jung, Ji-Young J. (Department of Psychiatry, Seoul National University College of Medicine) ;
  • Im, Joo-Yeon Jamie (Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences) ;
  • Lee, Sun-Hea (Department of Psychiatry, Seoul National University College of Medicine)
  • 조한별 (서울대학교 자연과학대학 뇌과학협동과정) ;
  • 김빈나 (서울대학교 자연과학대학 뇌과학협동과정) ;
  • 최지혜 (서울대학교 자연과학대학 뇌과학협동과정) ;
  • 전유진 (서울대학교 의과대학 정신건강의학교실) ;
  • 김지현 (서울대학교 의과대학 정신건강의학교실) ;
  • 정지영 (서울대학교 의과대학 정신건강의학교실) ;
  • 임주연 (서울대학교 자연과학대학 뇌과학협동과정) ;
  • 이선혜 (서울대학교 의과대학 정신건강의학교실)
  • Received : 2011.10.07
  • Accepted : 2011.10.14
  • Published : 2012.05.31

Abstract

Objectives : Novelty seeking (NS) represents a dopaminergically modulated tendency toward frequent exploratory activity. Considering the reports showing the relationship between exploratory activity and amygdalar function and structure, and the fact that amygdala is one of the key structures that constitute the dopaminergic pathway in the brain, amygdala might be closely related to NS tendencies. Amygdalar subregional analysis method, which has the enhanced sensitivity compared to the volumteric approach would be appropriate in investigating the subtle differences of amygdalar structures among healthy individuals. The aim of the current study was to examine whether amygdalar subregional morphometric characteristics are associated with the NS tendencies in healthy adults using the amygdalar subregional analysis method. Methods : Twenty-six healthy adults (12 males, 14 females ; mean age $29.8{\pm}6.2$ years) were screened for eligibility. All subjects completed the Korean version of the Temperament and Character Inventory (TCI) and underwent high-resolution brain magnetic resonance imaging. Individuals were divided into 2 groups according to NS scores of the TCI. Results : Individuals of the high NS group had significantly larger laterobasal subregions in right amygdala, after adjustment with the brain parenchymal volumes. Sensitivity analyses for each potential confounding factor such as age, education years and Hamilton Depression Rating Scale (HDRS) scores demonstrated consistent results. Conclusions : This study suggests that NS differences are associated with the laterobasal subregion of the amygdala.

Keywords

References

  1. Cloninger CR, Svrakic DM, Przybeck TR. A psychobiological model of temperament and character. Arch Gen Psychiatry 1993;50:975-990. https://doi.org/10.1001/archpsyc.1993.01820240059008
  2. Cloninger CR. Temperament and personality. Curr Opin Neurobiol 1994;4:266-273. https://doi.org/10.1016/0959-4388(94)90083-3
  3. Mulder R. The biology of personality. Aust N Z J Psychiatry 1992;26:364-376. https://doi.org/10.3109/00048679209072059
  4. Cloninger CR. Neurogenetic adaptive mechanisms in alcoholism. Science 1987;236:410-416. https://doi.org/10.1126/science.2882604
  5. Bardo MT, Donohew RL, Harrington NG. Psychobiology of novelty seeking and drug seeking behavior. Behav Brain Res 1996;77:23-43. https://doi.org/10.1016/0166-4328(95)00203-0
  6. Keltikangas-Jarvinen L, Raikkonen K, Ekelund J, Peltonen L. Nature and nurture in novelty seeking. Mol Psychiatry 2004;9:308-311. https://doi.org/10.1038/sj.mp.4001433
  7. Han DH, Yoon SJ, Sung YH, Lee YS, Kee BS, Lyoo IK, et al. A preliminary study: novelty seeking, frontal executive function, and dopamine receptor (D2) TaqI A gene polymorphism in patients with methamphetamine dependence. Compr Psychiatry 2008;49:387-392. https://doi.org/10.1016/j.comppsych.2008.01.008
  8. Nam YW, Lee SI, Shin CJ, Son JW, Kim SK. The association among the genetic polymorphism of dopamine D4 receptor, temperament and alcohol drinking behavior in young Korean adults. Korean J Biol Psychiatry 2011;18:101-108.
  9. Jacob CP, Romanos J, Dempfle A, Heine M, Windemuth-Kieselbach C, Kruse A, et al. Co-morbidity of adult attention-deficit/hyperactivity disorder with focus on personality traits and related disorders in a tertiary referral center. Eur Arch Psychiatry Clin Neurosci 2007;257:309-317. https://doi.org/10.1007/s00406-007-0722-6
  10. Downey KK, Stelson FW, Pomerleau OF, Giordani B. Adult attention deficit hyperactivity disorder: psychological test profiles in a clinical population. J Nerv Ment Dis 1997;185:32-38. https://doi.org/10.1097/00005053-199701000-00006
  11. Anckarsater H, Stahlberg O, Larson T, Hakansson C, Jutblad SB, Niklasson L, et al. The impact of ADHD and autism spectrum disorders on temperament, character, and personality development. Am J Psychiatry 2006;163:1239-1244. https://doi.org/10.1176/appi.ajp.163.7.1239
  12. Williams SM, Goldman-Rakic PS. Widespread origin of the primate mesofrontal dopamine system. Cereb Cortex 1998;8:321-345. https://doi.org/10.1093/cercor/8.4.321
  13. Demarest KT, Moore KE. Comparison of dopamine synthesis regulation in the terminals of nigrostriatal, mesolimbic, tuberoinfundibular and tuberohypophyseal neurons. J Neural Transm 1979;46:263-277. https://doi.org/10.1007/BF01259333
  14. Bjorklund A, Dunnett SB. Dopamine neuron systems in the brain: an update. Trends Neurosci 2007;30:194-202. https://doi.org/10.1016/j.tins.2007.03.006
  15. Bardo MT. Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens. Crit Rev Neurobiol 1998;12:37-67. https://doi.org/10.1615/CritRevNeurobiol.v12.i1-2.30
  16. Wise RA. Drug-activation of brain reward pathways. Drug Alcohol Depend 1998;51:13-22. https://doi.org/10.1016/S0376-8716(98)00063-5
  17. Reuter J, Raedler T, Rose M, Hand I, Glascher J, Buchel C. Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci 2005;8:147-148. https://doi.org/10.1038/nn1378
  18. Sheth A, Berretta S, Lange N, Eichenbaum H. The amygdala modulates neuronal activation in the hippocampus in response to spatial novelty. Hippocampus 2008;18:169-181. https://doi.org/10.1002/hipo.20380
  19. Rolls ET. Neurophysiology and cognitive functions of the striatum. Rev Neurol (Paris) 1994;150:648-660.
  20. Cohen MX, Schoene-Bake JC, Elger CE, Weber B. Connectivity-based segregation of the human striatum predicts personality characteristics. Nat Neurosci 2009;12:32-34. https://doi.org/10.1038/nn.2228
  21. Langer LF, Graybiel AM. Distinct nigrostriatal projection systems innervate striosomes and matrix in the primate striatum. Brain Res 1989;498:344-350. https://doi.org/10.1016/0006-8993(89)91114-1
  22. Bjorklund A, Moore RY, Nobin A, Stenevi U. The organization of tubero-hypophyseal and reticulo-infundibular catecholamine neuron systems in the rat brain. Brain Res 1973;51:171-191. https://doi.org/10.1016/0006-8993(73)90371-5
  23. Grace AA, Rosenkranz JA. Regulation of conditioned responses of basolateral amygdala neurons. Physiol Behav 2002;77:489-493. https://doi.org/10.1016/S0031-9384(02)00909-5
  24. Marowsky A, Yanagawa Y, Obata K, Vogt KE. A specialized subclass of interneurons mediates dopaminergic facilitation of amygdala function. Neuron 2005;48:1025-1037. https://doi.org/10.1016/j.neuron.2005.10.029
  25. Floresco SB, Tse MT. Dopaminergic regulation of inhibitory and excitatory transmission in the basolateral amygdala-prefrontal cortical pathway. J Neurosci 2007;27:2045-2057. https://doi.org/10.1523/JNEUROSCI.5474-06.2007
  26. Yang Y, Raine A, Narr KL, Colletti P, Toga AW. Localization of deformations within the amygdala in individuals with psychopathy. Arch Gen Psychiatry 2009;66:986-994. https://doi.org/10.1001/archgenpsychiatry.2009.110
  27. Kim JE, Lyoo IK, Estes AM, Renshaw PF, Shaw DW, Friedman SD, et al. Laterobasal amygdalar enlargement in 6- to 7-year-old children with autism spectrum disorder. Arch Gen Psychiatry 2010;67:1187-1197. https://doi.org/10.1001/archgenpsychiatry.2010.148
  28. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th ed. Washington, DC: American Psychiatric Press;1994.
  29. Hyler SE, Skodol AE, Kellman HD, Oldham JM, Rosnick L. Validity of the Personality Diagnostic Questionnaire--revised: comparison with two structured interviews. Am J Psychiatry 1990;147:1043-1048. https://doi.org/10.1176/ajp.147.8.1043
  30. Sung SM, Kim JH, Yang E, Abrams KY, Lyoo IK. Reliability and validity of the Korean version of the Temperament and Character Inventory. Compr Psychiatry 2002;43:235-243. https://doi.org/10.1053/comp.2002.30794
  31. Watson C, Andermann F, Gloor P, Jones-Gotman M, Peters T, Evans A, et al. Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic resonance imaging. Neurology 1992;42:1743-1750. https://doi.org/10.1212/WNL.42.9.1743
  32. Convit A, McHugh P, Wolf OT, de Leon MJ, Bobinski M, De Santi S, et al. MRI volume of the amygdala: a reliable method allowing separation from the hippocampal formation. Psychiatry Res 1999;90:113-123. https://doi.org/10.1016/S0925-4927(99)00007-4
  33. Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph (ACM) 1987;21:163-169. https://doi.org/10.1145/37402.37422
  34. Besl PJ, McKay ND. A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 1992;14:239-256. https://doi.org/10.1109/34.121791
  35. Kim NK, Kim HJ, Yoon SJ, Lyoo IK, Kang SH, Dager SR, et al. Amygdala shape analysis and parametric surface visualization using iterative closest point algorithm and spherical mapping. IEICE Technical Report 2007;106:271-274.
  36. Kim N, Kim HJ, Hwang J, Yoon SJ, Cho HB, Renshaw PF, et al. Amygdalar shape analysis method using surface contour aligning, spherical mapping, and probabilistic subregional segmentation. Neurosci Lett 2011;488:65-69. https://doi.org/10.1016/j.neulet.2010.11.005
  37. Athinoula A. Martinos Center for Biomedical Imaging. FreeSurfer. Available from: http://surfer.nmr.mgh.harvard.edu/.
  38. Wills TA, Vaccaro D, McNamara G. Novelty seeking, risk taking, and related constructs as predictors of adolescent substance use: an application of Cloninger's theory. J Subst Abuse 1994;6:1-20. https://doi.org/10.1016/S0899-3289(94)90039-6
  39. Wang S, Mason J, Charney D, Yehuda R, Riney S, Southwick S. Relationships between hormonal profile and novelty seeking in combatrelated posttraumatic stress disorder. Biol Psychiatry 1997;41:145-151. https://doi.org/10.1016/S0006-3223(95)00648-6
  40. Kashdan TB, Hofmann SG. The high-novelty-seeking, impulsive subtype of generalized social anxiety disorder. Depress Anxiety 2008;25:535-541. https://doi.org/10.1002/da.20382
  41. Aggleton JP. The Amygdala: A Functional Analysis. Oxford: Oxford University Press;2000.
  42. Bloom FE, Bjorklund A, Hokfelt T. The primate nervous system, Part III. 1st ed. Amsterdam: Elsevier Science BV;1999. p.93-145.
  43. Whalen PL, Phelps EA. The human amygdala. New York: The Guilford Press;2009. p.3-42.
  44. Rosenkranz JA, Grace AA. Modulation of basolateral amygdala neuronal firing and afferent drive by dopamine receptor activation in vivo. J Neurosci 1999;19:11027-11039.