Sex Differences in Cerebellar Structure of Healthy Adults

정상 성인에서 남녀의 소뇌 구조 차이

  • Kim, Ji-Hyun H. (Department of Psychiatry, Daegu Catholic University Medical Center) ;
  • Bae, Su-Jin (Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences) ;
  • Ryu, Keun-Taik (Department of Radiology and Medical Research Institute, Ewha Womans University School of Medicine) ;
  • Kang, Min-Seong (Department of Radiology and Medical Research Institute, Ewha Womans University School of Medicine) ;
  • Lim, Soo-Mee (Department of Radiology and Medical Research Institute, Ewha Womans University School of Medicine) ;
  • Lee, Sun-Ho (Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences) ;
  • Lee, So-Jin (Department of Psychiatry, Gyeongsang National University School of Medicine) ;
  • Ko, Eun (Interdisciplinary Program in Cognitive Science, Seoul National University College of Humanities) ;
  • Jeong, Do-Un (Department of Psychiatry, Seoul National University College of Medicine)
  • 김지현 (대구가톨릭대학병원 정신건강의학과) ;
  • 배수진 (서울대학교 자연과학대학 뇌과학협동과정) ;
  • 류근택 (이화여자대학교 의과대학 의학전문대학원 영상의학과학교실) ;
  • 강민성 (이화여자대학교 의과대학 의학전문대학원 영상의학과학교실) ;
  • 임수미 (이화여자대학교 의과대학 의학전문대학원 영상의학과학교실) ;
  • 이선호 (서울대학교 자연과학대학 뇌과학협동과정) ;
  • 이소진 (경상대학교 의학전문대학원 정신건강의학교실) ;
  • 고은 (서울대학교 인문대학 인지과학협동과정) ;
  • 정도언 (서울대학교 의과대학 정신건강의학교실)
  • Received : 2012.01.06
  • Accepted : 2012.01.20
  • Published : 2012.05.31

Abstract

Objectives : Although there have been studies that examine sex differences of the brain structures using magnetic resonance imaging, studies that specifically investigate cerebellar structural differences between men and women are scarce. The purpose of current study was to examine sex differences in structures of the cerebellum using cerebellar template and cerebellum analysis methods. Methods : Sixteen men and twenty women were included in the study. A MATLAB based program (MathWorks, Natick, MA, USA), Statistical Parametric Mapping 5 (SPM5) using the spatially unbiased infra-tentorial atlas template (SUIT) as the cerebellum template, was used to analyze the brain imaging data. Results : There was no significant difference in age between men (mean age=28.1) and women (mean age=27.2). Men showed higher gray matter density than women in two left cerebellar areas including the clusters in the lobules IV and V (a cluster located across the lobules IV and V), and the lobule VIIIb (lobules IV and V, t=4.75, p<0.001 ; lobule VIIIb, t=3.08, p=0.004). Conclusions : The current study found differences in cerebellar gray matter density between men and women. The current study holds its significance for applying the template specifically developed for the analysis of cerebellum.

Keywords

References

  1. Chen X, Sachdev PS, Wen W, Anstey KJ. Sex differences in regional gray matter in healthy individuals aged 44-48 years: a voxel-based morphometric study. Neuroimage 2007;36:691-699. https://doi.org/10.1016/j.neuroimage.2007.03.063
  2. Sowell ER, Peterson BS, Kan E, Woods RP, Yoshii J, Bansal R, et al. Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cereb Cortex 2007;17:1550-1560. https://doi.org/10.1093/cercor/bhl066
  3. Lv B, Li J, He H, Li M, Zhao M, Ai L, et al. Gender consistency and difference in healthy adults revealed by cortical thickness. Neuroimage 2010;53:373-382. https://doi.org/10.1016/j.neuroimage.2010.05.020
  4. Rijpkema M, Everaerd D, van der Pol C, Franke B, Tendolkar I, Fernandez G. Normal sexual dimorphism in the human basal ganglia. Hum Brain Mapp 2012;33:1246-1252. https://doi.org/10.1002/hbm.21283
  5. Raz N, Gunning-Dixon F, Head D, Williamson A, Acker JD. Age and sex differences in the cerebellum and the ventral pons: a prospective MR study of healthy adults. AJNR Am J Neuroradiol 2001;22:1161-1167.
  6. Allen JS, Damasio H, Grabowski TJ. Normal neuroanatomical variation in the human brain: an MRI-volumetric study. Am J Phys Anthropol 2002;118:341-358. https://doi.org/10.1002/ajpa.10092
  7. Szabo CA, Lancaster JL, Xiong J, Cook C, Fox P. MR imaging volumetry of subcortical structures and cerebellar hemispheres in normal persons. AJNR Am J Neuroradiol 2003;24:644-647.
  8. Tiemeier H, Lenroot RK, Greenstein DK, Tran L, Pierson R, Giedd JN. Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study. Neuroimage 2010;49:63-70. https://doi.org/10.1016/j.neuroimage.2009.08.016
  9. Kandel ER, Schwartz JH, Jessell TM. Principles of neural science. 4th ed. New York: McGraw-Hill;2000. p.832-852.
  10. Zagon IS, McLaughlin PJ, Smith S. Neural populations in the human cerebellum: estimations from isolated cell nuclei. Brain Res 1977;127:279-282. https://doi.org/10.1016/0006-8993(77)90541-8
  11. Herrup K, Kuemerle B. The compartmentalization of the cerebellum. Annu Rev Neurosci 1997;20:61-90. https://doi.org/10.1146/annurev.neuro.20.1.61
  12. Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage 1999;10:233-260. https://doi.org/10.1006/nimg.1999.0459
  13. Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. Neuroimage 2009;46:39-46. https://doi.org/10.1016/j.neuroimage.2009.01.045
  14. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 2003;23:8432-8444.
  15. Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 2006;7:511-522. https://doi.org/10.1038/nrn1953
  16. Balsters JH, Cussans E, Diedrichsen J, Phillips KA, Preuss TM, Rilling JK, et al. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. Neuroimage 2010;49:2045-2052. https://doi.org/10.1016/j.neuroimage.2009.10.045
  17. Grodd W, Hulsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp 2001;13:55-73. https://doi.org/10.1002/hbm.1025
  18. Takanashi M, Abe K, Yanagihara T, Sakoda S, Tanaka H, Hirabuki N, et al. A functional MRI study of somatotopic representation of somatosensory stimulation in the cerebellum. Neuroradiology 2003;45:149-152. https://doi.org/10.1007/s00234-002-0935-3
  19. Manni E, Petrosini L. A century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci 2004;5:241-249.
  20. Carper RA, Courchesne E. Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain 2000;123:836-844. https://doi.org/10.1093/brain/123.4.836
  21. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 2004;16:367-378. https://doi.org/10.1176/appi.neuropsych.16.3.367
  22. Stoodley CJ, Fawcett AJ, Nicolson RI, Stein JF. Balancing and pointing tasks in dyslexic and control adults. Dyslexia 2006;12:276-288. https://doi.org/10.1002/dys.326
  23. Liu Z, Xu C, Xu Y, Wang Y, Zhao B, Lv Y, et al. Decreased regional homogeneity in insula and cerebellum: a resting-state fMRI study in patients with major depression and subjects at high risk for major depression. Psychiatry Res 2010;182:211-215. https://doi.org/10.1016/j.pscychresns.2010.03.004
  24. Frodl TS, Koutsouleris N, Bottlender R, Born C, Jager M, Scupin I, et al. Depression-related variation in brain morphology over 3 years: effects of stress? Arch Gen Psychiatry 2008;65:1156-1165. https://doi.org/10.1001/archpsyc.65.10.1156
  25. DelBello MP, Strakowski SM, Zimmerman ME, Hawkins JM, Sax KW. MRI analysis of the cerebellum in bipolar disorder: a pilot study. Neuropsychopharmacology 1999;21:63-68. https://doi.org/10.1016/S0893-133X(99)00026-3
  26. De Bellis MD, Kuchibhatla M. Cerebellar volumes in pediatric maltreatment-related posttraumatic stress disorder. Biol Psychiatry 2006;60:697-703. https://doi.org/10.1016/j.biopsych.2006.04.035
  27. Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. Neuroimage 2006;33:127-138. https://doi.org/10.1016/j.neuroimage.2006.05.056
  28. Kuhn S, Romanowski A, Schilling C, Banaschewski T, Barbot A, Barker GJ, et al. Manual dexterity correlating with right lobule VI volume in right-handed 14-year-olds. Neuroimage 2012;59:1615-1621. https://doi.org/10.1016/j.neuroimage.2011.08.100
  29. Kuhn S, Romanowski A, Schilling C, Mobascher A, Warbrick T, Winterer G, et al. Brain grey matter deficits in smokers: focus on the cerebellum. Brain Struct Funct 2012;217:517-522. https://doi.org/10.1007/s00429-011-0346-5
  30. First MB, Spitzer RL, Gibbon M, Williams J. Structured clinical interview for DSM-IV Axis I disorders: patient edition (SCID-I/P, Version 2.0). New York: Biometrics Research Department, New York State Psychiatric Institute;1996.
  31. Hyler SE, Skodol AE, Oldham JM, Kellman HD, Doidge N. Validity of the Personality Diagnostic Questionnaire-Revised: a replication in an outpatient sample. Compr Psychiatry 1992;33:73-77. https://doi.org/10.1016/0010-440X(92)90001-7
  32. Evans AC, Collins DL, Mills SR, Brown ED, Kelly RL, Peters TM. 3D statistical neuroanatomical models from 305 MRI volumes. Proc IEEE Nucl Sci Symp Med Imaging Conf 1993;3:1813-1817.
  33. Fan L, Tang Y, Sun B, Gong G, Chen ZJ, Lin X, et al. Sexual dimorphism and asymmetry in human cerebellum: an MRI-based morphometric study. Brain Res 2010;1353:60-73. https://doi.org/10.1016/j.brainres.2010.07.031
  34. Makris N, Hodge SM, Haselgrove C, Kennedy DN, Dale A, Fischl B, et al. Human cerebellum: surface-assisted cortical parcellation and volumetry with magnetic resonance imaging. J Cogn Neurosci 2003;15:584-599. https://doi.org/10.1162/089892903321662967
  35. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 2009;44:489-501. https://doi.org/10.1016/j.neuroimage.2008.08.039
  36. Marvel CL, Desmond JE. Functional topography of the cerebellum in verbal working memory. Neuropsychol Rev 2010;20:271-279. https://doi.org/10.1007/s11065-010-9137-7
  37. Duff SJ, Hampson E. A sex difference on a novel spatial working memory task in humans. Brain Cogn 2001;47:470-493. https://doi.org/10.1006/brcg.2001.1326
  38. Anderson VA, Anderson P, Northam E, Jacobs R, Catroppa C. Development of executive functions through late childhood and adolescence in an Australian sample. Dev Neuropsychol 2001;20:385-406. https://doi.org/10.1207/S15326942DN2001_5