DOI QR코드

DOI QR Code

Effects of Diniconazole Application on Anatomical and Biochemical Characteristics Related to Stress Tolerance in Lilum davuricum

날개하늘나리에 있어서 디니코나졸 처리가 스트레스 내성과 관련된 해부학적 및 생화학적 특성에 미치는 영향

  • Eum, Sun-Jung (Department of Horticultural Science, Yeungnam University) ;
  • Park, Kyeung-Il (Department of Horticultural Science, Yeungnam University) ;
  • Choi, Young-June (Gangjin Agricultural Technology and Extension Center) ;
  • Oh, Wook (Department of Horticultural Science, Yeungnam University) ;
  • Kim, Kiu-Weon (Department of Horticultural Science, Yeungnam University)
  • 엄선정 (영남대학교 자연자원대학 원예생명과학과) ;
  • 박경일 (영남대학교 자연자원대학 원예생명과학과) ;
  • 최영준 (강진군농업기술센터) ;
  • 오욱 (영남대학교 자연자원대학 원예생명과학과) ;
  • 김규원 (영남대학교 자연자원대학 원예생명과학과)
  • Received : 2012.01.09
  • Accepted : 2012.02.28
  • Published : 2012.06.30

Abstract

This study was carried out to examine the effects of foliar-sprayed diniconazole on the morphological characteristics and the contents of polyamines (PA) and proline, and to investigate their relationship with stress tolerance in Lilium davuricum native to Korea. Plants with 5 cm mean height were sprayed with $50mg{\cdot}L^{-1}$ diniconazole or distilled water (control) and grown in a greenhouse maintained at 23/$18^{\circ}C$ (day/night) for 30 days. Diniconazole decreased plant height, leaf length, diameter and length of the pith and cortical cell of the stem, while it increased the thickness and epicuticular wax of leaves measured at 30 days after treatment. In polyamines contents, diniconazole increased spermidine content at 5-10 days after treatment and spermine content after the 10th day of treatment as compared with the control. Diniconazole decreased proline content after the 10th day of treatment as compared with the control. From these results, it was concluded that foliar-sprayed diniconazole might morphologically and biochemically improve the stress tolerance of this plant species.

본 연구는 디니코나졸(diniconazole, DCZ) 분무처리가 날개하늘나리(Lilium davuricum)의 형태학적 특성 및 폴리아민(polyamines, PA)과 프롤린(proline) 함량에 미치는 영향을 구명하여 식물 스트레스 내성과의 관련성을 파악하기 위해 수행되었다. 이를 위해 초장 5cm의 식물체에 DCZ $50mg{\cdot}L^{-1}$와 증류수(대조구)를 엽면살포한 후 23/$18^{\circ}C$(주/야)의 온실에서 30일간 생육시켰다. 처리 30일 후 DCZ 처리에 의해서는 날개하늘나리의 초장과 엽장이 감소하였고, 줄기 세포의 크기와 길이가 줄어들었으며, 잎의 두께와 표피조직의 큐티클층의 두께는 증가하였다. PA의 함량에 있어서, DCZ는 처리 후 5-10일경 spermidine의 함량을 증가시켰고 처리 10일 이후에는 spermine의 함량을 크게 증가시켰다. 프롤린 함량은 대조구에 비해 DCZ 처리구에서 처리 10일 후부터 함량이 감소하였다. 이 결과들을 종합해 볼 때, DCZ 처리는 형태해부학적 및 생화학적 측면에서 날개하늘나리의 스트레스 내성을 향상시킬 것으로 판단되었다.

Keywords

References

  1. Aharoni, N., A. Blumenfeld, and A.E. Richmond. 1977. Hormonal activity in detached lettuce leaves as affected by leaf water content. Plant Physiol. 59:1169-1173. https://doi.org/10.1104/pp.59.6.1169
  2. Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant Soil 39:205-207. https://doi.org/10.1007/BF00018060
  3. Burrows, G.E., T.S. Boag, and W.P. Stewart. 1992. Changes in leaf, stem, and root anatomy of Chrysanthemum cv. Lillian Hoek following paclobutrazol application. J. Plant Growth Regul. 11:189-194.
  4. Crozier, A., Y. Kamiya, G. Bishop, and T. Yokota. 2000. Biosynthesis of hormones and elicitor molecules, p. 850-929. In: B.B. Buchanan, W. Gruissem, and R.L. Jones (eds.). Biochemistry and molecular biology of plants. Amer. Soc. Plant Physiol., Rockville, MD.
  5. Davis, T.D., G.L. Steffens, and N. Sankhla. 1988. Triazole plant growth regulators. Hort. Rev. 10:63-105.
  6. Eum, S.J. 2004. The horticultural commercialization of Korean native lilies by tissue culture technology and plant growth retardant. PhD Diss., Yeungnam Univ., Gyeongsan, Korea.
  7. Eum, S.J., K.I. Park, W. Oh, and K.W. Kim. 2010a. Plant growth retardants can inhibit stem elongation and improve flowering rate in Lilium concolor var. parthneion and L. asuricum. Flower Res. J. 18:38-43.
  8. Eum, S.J., K.I. Park, W. Oh, and K.W. Kim. 2010b. Promotion of bulblet enlargement through liquid stationary culture in Korean native lilies in vitro. Hort. Environ. Biotechnol. 51:45-50.
  9. Fletcher, R.A. and A. Gilley. 2000. Triazoles as plant growth regulators and stress protectants. Hort. Rev. 24:55-138.
  10. Fletcher, R.A., C.R. Sopher, and N.N. Vettakkorumakankav. 2000. Regulation of gibberellins is crucial for plant stress protection, p. 71-87. In: A.S. Basra (ed.). Plant growth regulators in agriculture and horticulture: Their role and commercial uses. Food Products Press, Binghamton, NY.
  11. Galston, A.W. and R.K. Sawhney. 1987. Polyamines as endogenous growth regulators, p. 280-290. In: P.J. Davis (ed.). Plant hormones and their role in growth and development. Martinus Nijhoff Publishers, Dordrecht, The Netherlands.
  12. Galston, A.W. and R.K. Sawhney. 1990. Polyamines in plant physiology. Plant Physiol. 94:406-410. https://doi.org/10.1104/pp.94.2.406
  13. Gao, J., G. Hofstra, and R.A. Fletcher. 1988. Anatomical changes induced by triazoles in wheat seedlings. Can. J. Bot. 66:1178-1185. https://doi.org/10.1139/b88-168
  14. Gilley, A. and R.A. Fletcher. 1997. Relative efficacy of paclobutrazol, propiconazole and tetraconazole as stress protectants in wheat seedlings. Plant Growth Regul. 21:169-175. https://doi.org/10.1023/A:1005804717016
  15. Greenway, H. 1972. Salt responses of enzymes from species differing in salt tolerance. Plant Physiol. 49:256-259. https://doi.org/10.1104/pp.49.2.256
  16. Hofstra, G., L.C. Krieg, and R.A. Fletcher. 1989. Uniconazole reduces ethylene and 1-aminocyclopropane-1-carboxylic acid and increases spermine levels in mung bean seedlings. J. Plant Growth Regul. 8:45-51. https://doi.org/10.1007/BF02024925
  17. Kim, H.Y., B.J. Choi, and C.K. Sang. 1994. Effects of uniconazole on drought resistance of Pliea cadierei. I. Morphological changes and water loss in leaves. J. Kor. Soc. Hort. Sci. 35:387-391.
  18. Kim, K.W. and M.S. Byun. 1988. Physiological and morphological characteristics of the glaucous and vitreous carnation plantlets obtained in vitro. J. Kor. Soc. Hort. Sci. 29:216-223.
  19. Kim, K.W., M.S. Kang, and D.H. Goo. 1991. External and Histological characteristics of organogenesis from gladiolus callus. J. Kor. Soc. Hort. Sci. 32:124-129.
  20. Kramer, G.F. and C.Y. Wang. 1990. Effects of chilling and temperature preconditioning on the activity of polyamine biosynthetic enzymes in zucchini. J. Plant Physiol. 136:115-119. https://doi.org/10.1016/S0176-1617(11)81624-X
  21. Lee, J.J., S.W. Kwon, and J.C. Kim. 1996. Effects of field and shade culture on plastid, proline, protein, and polyamine content in aloes. J. Kor. Soc. Hort. Sci. 37:309-312.
  22. Lee, K.S., J.S. Lee, and S.Y. Choi. 1992. Changes in contents of chlorophyll and free proline as affected by NaCl in rice seedling. Korean J. Crop Sci. 37:178-184.
  23. Munns, R. and A. Termaat. 1986. Whole-plant responses to salinity. Aust. J. Plant Physiol. 13:143-160. https://doi.org/10.1071/PP9860143
  24. Park, R.D. 1982. Changes in the contents of some metabolites and ions and in some enzyme levels in rice plants grown under water-and salt-stressed condition. J. Kor. Soc. Agric. Chem. 25:135-141.
  25. Percival, G.C. and K. Noviss. 2008. Triazole induced drought tolerance in horse chestnut (Aesculus hippocastanum). Tree Physiol. 28:1685-1692. https://doi.org/10.1093/treephys/28.11.1685
  26. Potter, T.I., K.P. Zanewich, and S.B. Rood. 1993. Gibberellin physiology of safflower: Endogenous gibberellins and response to gibberellic acid. Plant Growth Regul. 12:133-140.
  27. Steinberg, S.L., J.M. Zajicek, and M.J. McFarland. 1991. Short-term effect of uniconazole on the water relations and growth of Ligustrum. J. Amer. Soc. Hort. Sci. 116:460-464.
  28. Upadhyaya, A., T.D. Davis, R.H. Walser, A.B. Galbraith, and N. Sankhla. 1989. Uniconazole-induced alleviation of low-temperature damage in relation to antioxidant activity. HortScience 24: 955-957.
  29. Wang, C.Y. and Z.L. Ji. 1989. Effect of low oxygen storage on chilling injury and polyamines in zucchini squash. Sci. Hort. 39:1-7. https://doi.org/10.1016/0304-4238(89)90031-9
  30. Wang, S.Y. and G.L. Steffens. 1985. Effect of paclobutrazol on water stress-induced ethylene biosynthesis and polyamine accumulation in apple seedling leaves. Phytochemistry 24: 2185-2190. https://doi.org/10.1016/S0031-9422(00)83007-1
  31. Withers, L.A. and P.J. King. 1979. Proline: A novel cryoprotectant for the freeze preservation of cultured cells of Zea mays L. Plant Physiol. 64:675-678. https://doi.org/10.1104/pp.64.5.675
  32. Xin, Z.G. and P.H. Li. 1993. Relationship between proline and abscisic acid in the induction of chilling tolerance in maize suspension-cultured cells. Plant Physiol. 103:607-613.
  33. Yang, S.F. and N.E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol. 35: 155-189. https://doi.org/10.1146/annurev.pp.35.060184.001103

Cited by

  1. Effects of growth retardants on sprouting and development of apricot (Prunus armeniaca L.) and neem (Azarchta indica A. Juss.) nodal buds vol.122, pp.2, 2015, https://doi.org/10.1007/s11240-015-0765-8