• Title/Summary/Keyword: 프롤린

Search Result 41, Processing Time 0.035 seconds

Proline and Ammonia Accumulation in the Zoysiagrass Infected with Large Patch (라지 팻치에 감염된 잔디에서 프롤린과 암모니아의 축적)

  • Kim, Dae-Hyun;Lee, Bok-Rye;Lee, Jae-Sik;Li, Ming;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.1
    • /
    • pp.37-44
    • /
    • 2007
  • To investigate the response of proline and ammonia to pathogen infection, plant growth and relevant chemical component were examined in large patch-infected or healthy (control) zoysiagrass during 6 days after treatment. Pathogen-infection increased root mortality by 30% compared to control. Soluble protein was not significantly affected by pathogen-infection except in the leaf at day 6. Ammonia concentration also increased significantly in both leaves and roots of pathogen-infected plants. Proline concentration in leaves and roots increased to 3.4- and 4.5-fold, respectively, compared to those of control at day 6. These results suggest that proline accumulation may be a sensitive biochemical indicator representing the stress intensity caused by pathogen infection in zoysiagrass.

Studies on the Amino Acid Components of Korean Hazel Nut (한국산(韓國産) 개암 종실(種實)의 아미노산 조성(組成)에 관한 연구)

  • Kim, Mi-Ran;Ko, Young-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 1981
  • Free and total amino acids of Korean hazel nut (Corylus heterophylla Fisch. var. Japonica koidz.) were identified by amino acid autoanalyzer (Technicon PNC-1 type). The results indicate that among 16 kinds of all free amino acids contained in hazel nut, arginine was the richest, and then came glutamic acid, proline, alanine, tyrosine and valine in that order. From the total amino acids which were closely related with the nutritional valuation, arginine was in the richest amount and then came with glutamic acid, proline, leucine, aspartic acid and valine.

  • PDF

Effects of Diniconazole Application on Anatomical and Biochemical Characteristics Related to Stress Tolerance in Lilum davuricum (날개하늘나리에 있어서 디니코나졸 처리가 스트레스 내성과 관련된 해부학적 및 생화학적 특성에 미치는 영향)

  • Eum, Sun-Jung;Park, Kyeung-Il;Choi, Young-June;Oh, Wook;Kim, Kiu-Weon
    • Horticultural Science & Technology
    • /
    • v.30 no.3
    • /
    • pp.229-235
    • /
    • 2012
  • This study was carried out to examine the effects of foliar-sprayed diniconazole on the morphological characteristics and the contents of polyamines (PA) and proline, and to investigate their relationship with stress tolerance in Lilium davuricum native to Korea. Plants with 5 cm mean height were sprayed with $50mg{\cdot}L^{-1}$ diniconazole or distilled water (control) and grown in a greenhouse maintained at 23/$18^{\circ}C$ (day/night) for 30 days. Diniconazole decreased plant height, leaf length, diameter and length of the pith and cortical cell of the stem, while it increased the thickness and epicuticular wax of leaves measured at 30 days after treatment. In polyamines contents, diniconazole increased spermidine content at 5-10 days after treatment and spermine content after the 10th day of treatment as compared with the control. Diniconazole decreased proline content after the 10th day of treatment as compared with the control. From these results, it was concluded that foliar-sprayed diniconazole might morphologically and biochemically improve the stress tolerance of this plant species.

Effect of Jasmonic Acid and NaCl on the Growth of Spearmint(Mentha spicata L.) (Jasmonic Acid 및 NaCl 처리가 스피아민트의 생육에 미치는 영향)

  • Choi, Young;Chiang, Maehee
    • Journal of Bio-Environment Control
    • /
    • v.26 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • This study investigated the effects of NaCl and jasmonic acid (JA) on the growth and physiological responses of spearmint (Mentha spicata L.). Spearmint was hydroponically grown for 3 weeks in modified Hoagland solution containing 0 (untreated control), JA ($20{\mu}M$ JA pretreatment), NaCl (50 mM NaCl treatment) and JA + NaCl ($20{\mu}M$ JA pretreatment + 50 mM NaCl treatment). Growth characteristics, chlorophyll, vitamin C, proline contents, DPPH scavenging activity and inorganic ion contents were evaluated. As a results, there were significant decreases in the plant height, leaf length, leaf width, and fresh weight of plants, treated with NaCl compared with control. On the other hand, the dry matters of shoot and root treated with JA + NaCl combination were better than control or NaCl treatment. Chlorophyll a and b contents in JA treatment was the highest. Vitamin C, antioxidant activity, and proline content in shoot were increased in NaCl treatment which showed low level of growth rate. The K/Na ratio, which is known to indirectly reflect the balance of ion uptake, was higher in a single treatment of JA than the control group, while lower in salt treatment (NaCl and JA + NaCl) because of high $Na^+$ absorption. In conclusion, these results showed that moderate stress treatment such as low level salt treatment and plant growth regulator jasmonic acid (JA) application would be potential strategies to improve the quality of spearmint by inducing the accumulation of secondary metabolites containing high antioxidant activity and essential oil.

Multi-sensor monitoring for temperature stress evaluation of broccoli (Brassica oleracea var. italica) (브로콜리(Brassica oleracea var. italica)의 온도 스트레스 평가를 위한 다중 센서 모니터링)

  • Cha, Seung-Ju;Park, Hyun Jun;Lee, Joo-Kyung;Kwon, Seon-Ju;Jee, Hyo-Kyung;Baek, Hyun;Kim, Han-Na;Park, Jin Hee
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.347-355
    • /
    • 2020
  • Several sensors have been developed for soil and plants to assess plant stress due to climate change. Therefore, the objective of the study is to nondestructively evaluate temperature stress on plant by monitoring climatic and soil conditions and plant responses using various sensors. Plant responses were monitored by electrical conductivity in plant stem and sap flow rate. Electrical conductivity in plant stem reflects the physiological activity of plants including water and ion transport. Fully grown Brassica oleracea var. italica was exposed to 20/15 ℃ (day/night) with 16 h photoperiods as a control, low temperature 15/10 ℃, and high temperature 35/30 ℃ while climatic, soil, and plant conditions were monitored. Electrical conductivity in plant stem and sap flow rate increased during the day and decreased at night. Under low temperature stress, electrical conductivity in plant stem of Brassica oleracea var. italica was lower than control while under high temperature stress, it was higher than control indicating that water and ion transport was affected. However, chlorophyll a and b increased in leaves subjected to low temperature stress and there was no significant difference between high temperature stressed leaves and control. Free proline contents in the leaves did not increase under low temperature stress, but increased under high temperature stress. Proline synthesis in plant is a defense mechanism under environmental stress. Therefore, Brassica oleracea var. Italica appears to be more susceptible to high temperature stress than low temperature.

Selection of Drought Tolerant Plants by Drought the Physiological Characteristics and Biochemicals Material about the Compositae Plants (건조 생리특성 및 생화학적 물질을 인자로 한 국화과 식물의 내건성 식물 선발)

  • Yang, Woo Hyeong;Im, Hyeon Jeong;Park, DongJin;Kim, Hak Gon;Yong, Seong Hyeon;Kang, Seung Mi;Ma, Ho Seop;Choi, Myung Suk
    • Journal of agriculture & life science
    • /
    • v.50 no.5
    • /
    • pp.51-60
    • /
    • 2016
  • This study was selected drought tolerant plants, by observing the physiological characteristics and biochemical materials from the 9 kinds of the Compositae plants. After selecting plants of the similar size, and then drought stress was induced by the irrigation stopping. Survival rates, chlorophyll values, relative water content(RWC), excised-leaf water loss(ELWL), proline, reducing sugar were measured after 30 days of stopping irrigation. The species that had high rates of survival were Ainsliaea acerifolia Sch. Bip, Aster koraiensis, Aster scaber, Dendranthema zawadskii(S), however other 5 species were dead. The remaining factors have been determined based on plant species showed a higher survival rate. However, chlorophyll content showed high values in A. acerifolia, A.altaicus var. uchiyamae, A. koraiensis, and will have been determined that has no correlation with survival rates, except for A. acerifolia and A. koraiensis. On the other hand, A. scaber, A. acerifolia, A. koraiensis were determined to be relatively high drought tolerant plants in RWC, ELWL, proline, reducing sugar, it showed a similar correlation with survival rate. As a result of 9 kinds of the Compositae plants A. scaber, A. acerifolia, A. koraiensis were considered relatively higher drought tolerant plants.

Effects of Different Soil on the Growth of Salicornia herbacea (토양조건이 퉁퉁마디의 생육에 미치는 영향)

  • Baik, Jung-Ae;Chiang, Mae-Hee
    • Journal of Bio-Environment Control
    • /
    • v.20 no.3
    • /
    • pp.216-220
    • /
    • 2011
  • This experiment was conducted to select the right artificil soil for the purpose of artificial cultivation by effect of NaCl and different artificial soil treatment on plant growth in Salicornia herbacea that live in coastal areas. The experimental plants were planted in light and easy-to-use artificial porous soil, vermiculite, perlite, and mixed soil and were cultured for 4 month treated by hyponex solution fertilizer and 200 mM NaCl. The height, fresh weight, and dry weight of plant growth was good in a mixed soil of porous soil and pearlite. NaCl treatment on growth and chlorophyll contents, regardless of soil type decreased. Proline content of control was showed higher than salt treatment in planted by poros soil and perlite and antioxidant activity was similar value in all treatment. The antioxidant of Salicornia in different soil and salt treatment was not affected.

Effect of Mycorrhiza on Plant Growth and Drought Resistance in Ardisia pusilla (Mycorrhiza 처리가 Ardisia pusilla의 생육 및 내건성에 미치는 영향)

  • Baek, Yi-Hwa;Baikt, Jung-Ae;Lee, Yun-Jeong;Nam, Yu-Kyeong;Sohn, Bo-Kyoon;Lee, Jae-Sun;Chiang, Mae-Hee
    • Journal of Bio-Environment Control
    • /
    • v.18 no.2
    • /
    • pp.132-136
    • /
    • 2009
  • To investigate the effect of mycorrhiza on drought resistance and plant growth, Ardisia pusilla were colonized with arbuscular mycorrhiza (AM), Glomus spp. Host plants were cultured in a growth chamber for 30 days after colonization with AM. Water stress treatment was carried out by repeating five days off-watering and re-watering for 60 days. The growth of A. pusilla was enhanced by AM colonization compared to that of control, while the proline contents was significantly reduced in AM colonized plants compared to that of non-mycorrhizal plants. The inorganic nutrient contents i.e. Fe, Mn, Zn, and Cu in arbuscular mycorrhizal plants were higher than those of control.

Monitoring of plant induced electrical signal of broccoli (Brassica oleracea var. italica) under changing light and CO2 conditions (광 및 CO2 변화 조건에서 브로콜리(Brassica oleracea var. italica)의 전기적 신호 모니터링)

  • Park, Jin Hee;Kim, Han-Na
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.351-356
    • /
    • 2021
  • Changing environmental conditions can affect plant growth by influencing water and nutrient transport and photosynthesis. Plant physiological responses under changing environmental conditions can be non-destructively monitored using electrodes as plant induced electrical signal (PIES). Objective of the study was to monitor PIES in response to increased CO2 and decreased photosynthetic photon flux density (PPFD). The PIES increased during day time when transpiration and photosynthesis occurs and monitored CO2 concentration was negatively correlated to the PIES. Enhanced CO2 concentration slightly reduced PIES, but the effect of increased CO2 was limited by light intensity. The effect of reduced PPFD was not appeared immediately because water and nutrient transport was not promptly affected by the light. The study was conducted to evaluate short-term effect of increasing CO2 and decreasing PPFD, hence proline content and chlorophyll fluorescence was not significantly affected by the conditions.