A BJT Structure with High-Matching Property Fabricated Using CMOS Technology

CMOS 기술을 기반으로 제작된 정합 특성이 우수한 BJT 구조

  • Jung, Yi-Jung (Depart of Electronics Engineering, Chungnam National University) ;
  • Kwon, Hyuk-Min (Depart of Electronics Engineering, Chungnam National University) ;
  • Kwon, Sung-Kyu (Depart of Electronics Engineering, Chungnam National University) ;
  • Jang, Jae-Hyung (Depart of Electronics Engineering, Chungnam National University) ;
  • Kwak, Ho-Young (Depart of Electronics Engineering, Chungnam National University) ;
  • Lee, Hi-Deok (Depart of Electronics Engineering, Chungnam National University)
  • Received : 2012.03.19
  • Accepted : 2012.04.30
  • Published : 2012.05.25

Abstract

For CMOS based bipolar junction transistor (BJT), a novel BJT structure which has higher matching property than conventional BJT structure was proposed and analyzed. The proposed structure shows a slight decrease of collector current density, $J_C$ about 0.361% and an increase of current gain, ${\beta}$ about 0.166% compared with the conventional structure. However, the proposed structure shows a decrease of area about 10% the improvement of matching characteristics of collector current ($A_{IC}$) and current gain ($A_{\beta}$) about 45.74% and 38.73% respectively. The improved matching characteristic of proposed structure is believed to be mainly due to the decreased distance between two emitters of pair BJTs, which results in the decreased effect of deep n-well of which resistance has the higher standard deviation than the other resistances.

본 논문에서는 CMOS 기반의 BJT 제작에 있어서 일반적인 BJT 구조에 비해 정합특성이 우수한 새로운 BJT 구조를 제안하고, 특성을 비교 분석하였다. 새로운 정합 구조가 기존의 정합 구조에 비해 콜렉터 전류 밀도 $J_C$는 0.361% 감소하였고, 전류이득 ${\beta}$는 0.166% 증가하여 큰 차이가 보이지 않았지만, 소자 면적이 10% 감소했으며, 콜렉터 전류($A_{Ic}$)와 전류이득($A_{\beta}$)의 정합 특성이 각각 45.74%, 38.73% 향상되었다. 이와 같이 정합특성이 개선된 주 이유는 쌍으로 형성된 BJT 소자들의 에미터 간의 거리가 감소한 것이라고 생각되며, deep n-well 저항의 표준편차 값이 다른 저항들에 비해 큰 것으로부터 간접적으로 증명이 된다고 여겨진다.

Keywords

References

  1. R. J. Widlar, "New developments in IC Voltage regulators", IEEE J. Solid-State Circuits, Vol. SC-8, No. 1, pp. 2-7, Feb. 1971.
  2. P. Wessels, M. Swanenberg, H. V. Zwol, B. Krabbenborg, H. Boezen, M. Berkhout, and A. Grakist, "Advanced BCD technology for automotive, audio and power applications", IEEE J. Solid-State Circuits, Vol. 51, No. 2, pp. 195-211, Feb. 2007.
  3. M. Darwish and R. Taubenest, "CMOS and complementary isolated bipolar transistor monolithic integration process", J. Electrochem. Soc., Vol. 121, No. 8, pp. 1119-1122, Aug. 1974. https://doi.org/10.1149/1.2401989
  4. O. H. Schade, Jr., "BIMOS Micropower IC's" IEEE J. Solid-State Circuits, Vol. SC-13, No. 6, pp. 791-798, Dec. 1978.
  5. Z. Zhang, Z. Feng, X. Li, M. Hu, C. Zheng, "A research for BCD compatible technology", Solid-State and Integrated- Circuit Technology, pp.192-194, Oct. 2008.
  6. H. P. Tuinhout, "Improving BiCMOS technologies using BJT parametric mismatch characterisation", IEEE BCTM, pp. 163-170, Sept. 2003.
  7. M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, "Matching Properties of MOS Transistors", IEEE J. Solid-State Circuits, Vol. SC-24, No. 5, pp. 1433-1439, Oct. 1989.