DOI QR코드

DOI QR Code

A Study on the NOx Reduction of Flue Gas Using Seawater Electrolysis

해수 전기분해를 적용한 배연 탈질 기술에 관한 연구

  • Kim, Tae-Woo (STX Institute of Technology) ;
  • Kim, Jong-Hwa (Dept. of Chemical Engineering, Changwon National University) ;
  • Song, Ju-Yeong (Dept. of Chemical Engineering, Changwon National University)
  • 김태우 (STX종합기술원) ;
  • 김종화 (창원대학교 화공시스템공학과) ;
  • 송주영 (창원대학교 화공시스템공학과)
  • Received : 2012.11.08
  • Accepted : 2012.12.24
  • Published : 2012.12.30

Abstract

In this study, we investigated the characteristics of NO oxidation using un-divided electrolyzed seawater as oxidant. The concentration of available chlorine and the temperature of electrolyzed seawater are increased with electrolysis time in the closed-loop constant current electrolysis system. While NO gas flow through bubbling reactor which is filled with electrolyzed seawater, the oxidation rate of NO to $NO_2$ is increased with the concentration of available chlorine and the temperature. $NO_2$, generated by oxidation reaction, is dissolved in electrolyzed seawater and existed as $HNO_3{^-}$ ion.

본 연구에서는 무격막식 전기분해 처리된 해수를 산화제로하는 NO 산화반응의 특성에 대해 실험적으로 살펴보았다. 폐순환 정전류 전기분해 시스템을 통해전해 시간이 길어질수록 전해수의 유효 염소농도와 온도, 염소산 이온의 비율이 증가함을 확인하였다. 전해수가 채워진 버블링 반응기에서 전해수의 유효염소농도와 온도에 비례하여 $NO_2$로 산화되는 NO의 양이 증가하였다. 또한 산화되어 생성된 $NO_2$는 전해수에 용해되어 $HNO_3{^-}$ 이온으로 존재함을 확인하였다.

Keywords

References

  1. C. W. Park, H. S. Kim, S. J. Woo and Y. R. Kim, Study on Emission Reduction with Injection Strategy and Exhaust-Gas Recirculation in Gasoline Direct Injection Engine Transactions of the Korean society of mechanical engineers, 36(3), 335 (2012).
  2. H. J. Park, N. W. Lee, J. W. Choi and W. S. Lim, A Study on Removal of NOx by Low Temperature Plasma, Korean Chem. Eng. Res.(HWAHAK KONGHAK), 48(4), 540 (2010).
  3. Y. S. Mok, H. C. Kang, H. W. Lee, and I. S. Nam, Effect of Plasma Discharge on Selective Catalytic Reduction of Nitrogen Oxides, Korean Chem. Eng. Res.(HWAHAK KONGHAK) , 41(2), 256(2003).
  4. P. W. Seo, S. S. Kim, and S. C. Hong, A Study of the Increase in Selective Catalytic Reduction (SCR) Activity of the V/TiO2 Catalyst Due to the Addition of Monoethanolamine (MEA), Korean J. Chem. Eng., 27(4), 1220 (2010).
  5. S. K. Jeong and S. C. Hong, The Characteristic of Selective Catalytic Reduction of Nitrogen Oxides over Natural Manganese Ore with $NH_3$ at Low Temperature, J. korea Ind. Eng. Chem., 12(8), 841 (2001).
  6. T. H. Kim, Y. M. Jo and Y. K. Park, Characterization of TiO2 base Catalyst for De-NOx, J. of the Korean Oil Chemists' Soc., 28(4), 379(2011).
  7. T. W. Kim, S. J. Choi, J. H. Kim and J. Y. Song, A Study on the NOx Reduction of Flue Gas Using Un-divided Electrolysis of Seawater, KoreanChem. Eng. Res., 50(5), 825(2012).
  8. V. M. Berdnikov, and N. M. Bazhin, Oxidation-reduction Potentials of Certain Inorganic Radicals in Aqueous Solutions, Russ. J. Phys. Chem., Engl. Transl., 44, 395 (1970).
  9. I. G. Zacharia, and W. M. Deen, Diffusivity and Solubility of Nitric Oxide in Water and Saline, Ann. Biomed. Eng., 33(2), 214 (2005).
  10. B. R. Deshwal, D. S. Jin, S. H. Lee, S. H. Moon, J. H. Jung and H. K Lee, Removal of NO from Flue Gas by Aqueous Chlorine-dioxide Scrubbing Solution in a Lab-scale Bubbling Reactor, J. of Hazardous Materials, 150, 649(2008).
  11. R. Krzyzynska, Y. Zhao and N. Hutson, Absorption of NOx, SO2, and Mercury in a Simulated Additive-enhanced Wet Flue Gas Desulphurization Scrubber, J. of Environ. Stud., 19(6), 1255 (2010).
  12. L. Chen, J. W. Lin and C. L. Yang, Oxidation and Absorption of Nitric Oxide in a Packed Tower with Sodium Hypochlorite Aqueous Solutions, Environmental Progress, 24(3), 279 (2005).
  13. V. L. Snoeyink, D. Jenkins, "Water chemistry", p. 388, John Wiley & Sons(1980).
  14. L. R. Czarnetzki and L. J. J. Janssen, Formation of Hypochlorite, Chlorate and Oxygen during NaCl Electrolysis from Alkaline Solution at an $RuO_2/TiO_2$ Anode, Journal of Applied Electrochemistry, 22, 315(1992).
  15. J. H. Park and S. H. Paik, The Problems of Chemistry Teachers' and Pre-service Teachers' Conceptions in the Prediction of Electrolysis Products, Journal of the Korean Chemical Society, 48(5), 519 (2004).
  16. H. J. Park, S. W. Lee, M. G. Ku and J. H. Lim, Electrochemical Treatment of Dye Wastewater Using $IrO_2/Ti$ Electrode, Applied Chemistry, 14(1), 37 (2010).
  17. K. M. Lee, Y. C. Byun, D. J. Koh and D. N. Shin, Characteristics of NO Oxidation Using $NaClO_2$, Korean Chem. Eng. Res., 46(5), 988 (2008).
  18. S. H. An, Air Pollution Protection Onboard by Seawater and Electrolyte, J. of the Korean Society of Marine Engineering, 30(1), 93 (2006).
  19. E. Ghibaudi, J. R. Barker and S. W. Benson, Reaction of NO with Hypochlorous Acid, International Journal of Chemical Kinetics, 6, 843(1979).

Cited by

  1. 선박용 디젤엔진의 NOx를 저감하기 위한 습식 배기가스 처리기술 적용에 관한 실험적 연구 vol.41, pp.3, 2017, https://doi.org/10.5916/jkosme.2017.41.3.216
  2. Investigation on the Emission Characteristics with a Wet-Type Exhaust Gas Cleaning System for Marine Diesel Engine Application vol.8, pp.11, 2012, https://doi.org/10.3390/jmse8110850