• 제목/요약/키워드: NO oxidation

검색결과 1,378건 처리시간 0.031초

H2O2 촉매 전환에 의해 생성된 건식산화제를 이용한 NO 산화에 관한 연구 (A study on the NO oxidation using dry oxidant produced by the catalytic conversion of H2O2)

  • 장정희;한기보
    • 한국응용과학기술학회지
    • /
    • 제33권1호
    • /
    • pp.100-109
    • /
    • 2016
  • 본 연구에서는 촉매 상 $H_2O_2$ 전환에 의해 건식산화제가 생성되었으며, 이를 이용한 NO 산화 공정에 대한 연구를 진행하였다. 건식산화제를 생성하기 위한 $H_2O_2$ 촉매 전환에 관한 실험을 수행한 결과, Mn계 촉매의 성능이 가장 우수하였으며, 이를 통해 생성된 건식산화제를 NO 산화공정에 주입하여 다양한 운전조건에서 NO 산화특성을 조사하였다. 그 결과, $H_2O_2$ 주입량, 산화반응온도, 그리고 공간속도가 NO 산화율에 크게 영향을 미치는 것을 확인하였다. 그리고, 산화반응온도와 $H_2O_2$ 주입량이 증가할수록 NO 산화효율이 증가하였으며, 공간속도가 증가할수록 NO 산화효율이 감소하였다.

코로나방전에 의한 $NO_2$ 전환특성 및 soot 산화에 관한 연구 (An experimental study on $NO-NO_2$ conversion characteristics and oxidation of soot by corona discharge)

  • 박용성;전광민;박광서;이종현;조성우
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제23회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.179-184
    • /
    • 2001
  • The characteristics of $NO-NO_2$ conversion and soot oxidation by corona discharge are investigated experimentally. The discharge current decreases with the increase of oxygen concentration and it increases more sharply for anode corona than for cathode corona as discharge voltage increases after corona onset voltage. $NO-NO_2$ conversion increases with the energy density of corona discharge and the addition of $O_2$ in a base $N_2$ gas. Soot oxidation occurs at approximately $480^{\circ}C$ in a mixture of 21% $O_2$, base $N_2$ gas, and enhances as temperature increases. The initiation temperature of soot oxidation advances greatly to about $280^{\circ}C$ with the addition of 300ppm $NO_2$, which is generated from the conversion of NO to $NO_2$ by corona discharge. CO is generated at higher temperature by about $50{\sim}100^{\circ}C$ than $CO_2$ in the process of soot oxidation.

  • PDF

질화세균의 암모니아 산화능과 이에 미치는 환경요인의 영향 (Ammonia oxidation activity of nitrifying bacteria and effects of some environmental factors)

  • 송홍규;하영칠;홍순우
    • 미생물학회지
    • /
    • 제21권2호
    • /
    • pp.79-85
    • /
    • 1983
  • Ammonia oxidation activity of polluted water samples in Jinhae Bay and isolated strain from the seawater was investigated, and effects of environmental factors such as temperature, salinity, substrate concentration to the ammonia oxidation were also investigated. The ammonia oxidation activities of sediments, 0.01-0.04mg eq. $NO_2-N/l/h$, were exceptionally higher than that of sea water, $0.5{\sim}1{\mu}g$ eq. $NO_2-N/l/h$. the activities of muddy sediments at station 4 and 2 were 0.03~0.04mg eq. $NO_2-N/l/h$ and that of sandy sediment at station 3 was 0.002mg eq. $NO_2-N/l/h$. In the case of sea water, the activity of polluted area, station 1, was 2 times higher than that of offshore, station 4. The isolated strain reached log phase after 30days culturs and its oxidation activity was $2{\sim}3{\mu}g$ eq. $NO_2-N/day$. The maximum oxidation of ammonia by IA 13 strain occured at 30mg/l oxidation increased with the salinity rising up to 100% seawater concentraion. And temperature for maximum oxidation of ammonia was $35^{\circ}C$. the oxidation increased with the salinity rising up to 100% seawater concentration.

  • PDF

$Pt/CeO_2$ 촉매와 Tight Contact 한 상태의 Model Soot 산화에 NO가 미치는 영향에 관한 실험적 연구 (Effect of NO on Catalytic Soot Oxidation in Tight Contact with $Pt/CeO_2$ Using a Flow Reactor System)

  • 이동일;송창훈;송순호;전광민
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.52-56
    • /
    • 2011
  • Active regeneration in CDPF requires $O_2$ which regenerates soot at high temperature. However, small amount of NO can interrupt $O_2$ regeneration in CDPF. To verify this phenomena, soot oxidation experiments using a flow reactor with a $Pr/CeO_2$ catalyst are carried out to simulate Catalyzed Diesel Particulate Filter (CDPF) phenomena. Catalytic soot oxidation with and without small amount of NO is conducted under tight contact condition. As the heating rate rises, the temperature gap of maximum reaction rate is increased between with and without 50ppm NO. To accelerate the $NO_2$ de-coupling effect, CTO process is performed to eliminate interfacial contact for that time. As CTO process is extended, temperature which indicates peak reaction rate increases. From this result, it is found that small amount of NO can affect tight contact soot oxidation by removal of interfacial contact between soot and catalyst.

이산화망간 촉매와 오존을 이용한 NO의 촉매 산화 특성 (Catalytic Oxidation of NO on MnO2 in the Presence of Ozone)

  • 진성민;정종수;이재헌;정주영
    • 한국환경과학회지
    • /
    • 제18권4호
    • /
    • pp.445-450
    • /
    • 2009
  • In this study, the fundamental experiments were performed for catalytic oxidation of NO (50 ppm) on $MnO_2$ in the presence of ozone. The experiments were carried out at various catalytic temperatures ($30-120^{\circ}C$) and ozone concentrations (50-150 ppm) to investigate the behavior of NO oxidation. The honeycomb type $MnO_2$ catalyst was rectangular with a cell density of 300 cells per square inch. Due to $O_3$ injection, NO reacted with $O_3$ to form $NO_2$, which was adsorbed at the $MnO_2$ surface. The excessive ozone was decomposed to $O^*$ onto the $MnO_2$ catalyst bed, and then that $O^*$ was reacted with $NO_2$ to form $NO_3^-$. It was found that the optimal $O_3$/NO ratio for catalytic oxidation of NO on $MnO_2$ was 2.0, and the NO removal efficiency on $MnO_2$ was 83% at $30^{\circ}C$. As a result, NO was converted mainly to $NO_3^-$.

NO Reduction and Oxidation over PAN based-ACF

  • Kim, Je-Young;Lee, Jong-Gyu;Hong, Ik-Pyo
    • Carbon letters
    • /
    • 제1권1호
    • /
    • pp.17-21
    • /
    • 2000
  • Catalytic reduction and oxidation of NO over polyacrylonitrile based activated carbon fibers (PAN-ACF) under various conditions were carried out to develop removal process of NO from the flue gas. The effect of temperature, oxygen concentration and the moisture content for the reduction of NO with ammonia as a reducing agent was investigated. The reduction of NO increased with the oxygen concentration, but decreased with the increased temperature. The moisture content in the flue gas affects the reduction of NO as the inhibition of the adsorption of the other components and the reaction on the surface of ACE For the oxidation of NO to $NO_2$ over PAN-ACF without using a reducing gas, it showed the temperature and the oxygen concentration of the flue gas are the important factors for the NO conversion in which the conversion increased with oxygen concentration and decreased with the temperature increase and might be the alternative option for the selective catalytic reduction process.

  • PDF

비열플라즈마에 의한 NO의 산화와 NaOH 샤워해 의한 NOx의 제거특성 (NO Oxidation using Non-Thermal Plasma and NOx removal by NaOH-Water Solution Shower)

  • 박재윤;고용술;김익균;박상현;고희석;이덕출
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.947-949
    • /
    • 1998
  • In this paper, the NO was oxidized $NO_2$ by using the non-thermal plasma and NOx removal characteristics were measured by showering NaOH water-solution to $NO_2$. The NO oxidation increased in the order of DC, AC, and Pulse. NOx oxidation for two stage with applied voltage was better than that for one stage with applied voltage. NO oxidation didn't depend on applied voltage. While NO oxidation was going on, NOx removal efficiency was 20-25%, however, significantly depended on the injection method of air and $H_2O$ + air. When NaOH water-solution density of 20% was showered to flue gases, NOx removal efficiency increased to 64%.

  • PDF

비열 플라즈마에 의한 NO의 산화에서의 탄화수소 첨가 효과와 그 반응역학에 대한 수치적 연구 (Numerical Study of the Effects of Hydrocarbon Addition and Corresponding Chemical Kinetics on the Promotion of NO Oxidation in Nonthermal Plasma DeNOx Treatment)

  • 신현호;윤웅섭
    • 한국연소학회지
    • /
    • 제5권2호
    • /
    • pp.37-50
    • /
    • 2000
  • In the present study, a systematic chemical kinetic calculations were made to investigate the augmentation of $NO-NO_2$ conversion due to the addition of various hydrocarbons (methane, ethylene, ethane, propylene, propane) in the nonthermal plasma treatment. It is included in the present conclusion that the reaction between hydrocarbon and oxygen radicals induced by electron collision, is believed to be a primarily process for triggering the overall NO oxidation and the eventual NOx reduction. Upon the completion of the initiating step, various radicals (OH, $HO_2$ etc.) successively are produced by hydrocarbon decomposition form the primary path of $NO-NO_2$ conversion. When the initiating step is not activated, hydrocarbon consumption rate appeared to be very low, thereby the targeted level of NO conversion can only be achieved by the addition of more input energy. Present study showed ethylene and propylene to have higher affinity with O radical under all conditions, thereby both of these hydrocarbons show very fast and efficient $NO-NO_2$ oxidation. It was also shown that propylene is superior to ethylene in the aspect of NOx removal.

  • PDF

해수 전기분해를 적용한 배연 탈질 기술에 관한 연구 (A Study on the NOx Reduction of Flue Gas Using Seawater Electrolysis)

  • 김태우;김종화;송주영
    • 한국응용과학기술학회지
    • /
    • 제29권4호
    • /
    • pp.570-576
    • /
    • 2012
  • 본 연구에서는 무격막식 전기분해 처리된 해수를 산화제로하는 NO 산화반응의 특성에 대해 실험적으로 살펴보았다. 폐순환 정전류 전기분해 시스템을 통해전해 시간이 길어질수록 전해수의 유효 염소농도와 온도, 염소산 이온의 비율이 증가함을 확인하였다. 전해수가 채워진 버블링 반응기에서 전해수의 유효염소농도와 온도에 비례하여 $NO_2$로 산화되는 NO의 양이 증가하였다. 또한 산화되어 생성된 $NO_2$는 전해수에 용해되어 $HNO_3{^-}$ 이온으로 존재함을 확인하였다.

미생물에 의한 탈질 과정 동안의 비소 동시 산화 특성 평가 (Characteristics of Microbial Arsenic Oxidation under Denitrification Environment)

  • 오설란;김동훈;문희선
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제24권4호
    • /
    • pp.1-10
    • /
    • 2019
  • Recently, groundwater contamination by mixed occurrence of arsenic (As) and nitrate ($NO_3{^-}$) has been a serious environmental issue all around world. In this study, we investigated the microbial As(III) oxidation characteristic under denitrification process to examine the feasibility of the microbial consortia in wetland sediment to simultaneously treat these two contaminants. The detail objectives of this study were to investigate the effects of $NO_3{^-}$ on the oxidation of As(III) in anaerobic environments and observe the microbial community change during the As oxidation under denitrification process. Results showed that the As(III) was completely and simultaneously oxidized to As(V) under denitrification process, however, it occurred to a much less extent in the absence of sediment or $NO_3{^-}$. In addition, the significant increase of As(III) oxidation rate in the presence of $NO_3{^-}$ suggested the potential of As oxidation under denitrification by indigenous microorganisms in wetland sediment. Genera Pseudogulbenkiania, and Flavisolibacter were identified as predominant microbial species driving the redox process. Conclusively, this study can provide useful information on As(III) oxidation under denitrifying environment and contribute to develop an effective technology for simultaneous removal of As(III) and $NO_3{^-}$ in groundwater.