• Title/Summary/Keyword: Concentration of available chlorine

Search Result 20, Processing Time 0.035 seconds

A Study on the NOx Reduction of Flue Gas Using Un-divided Electrolysis of Seawater (무격막식 해수 전기분해 방식을 통한 배연 탈질에 관한 연구)

  • Kim, Tae-Woo;Choi, Su-Jin;Kim, Jong-Hwa;Song, Ju-Yeong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.825-829
    • /
    • 2012
  • In this study, we investigated NO oxidation characteristic that depends on available chlorine concentration and temperature of seawater which is treated by un-divided electrolysis. Reactant gas passed through bubbling reactors which is filled with electrolyzed water and then NO concentration change was analyzed. In the closed-loop electrolysis system, concentration of available chlorine increased with electrolysis time. The higher oxidation rate of NO to $NO_2$ was obtained with the higher concentration of available chlorine. Oxidation of NO was fast when temperature of electrolyzed water was high, in the case of same concentration of available chlorine.

A Study on the Detection Behavior of Chlorine Dioxide on Metal Oxide Sensors (금속산화물센서의 이산화염소 가스에 대한 감지거동에 관한 연구)

  • Yu, Joon-Boo;Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.211-214
    • /
    • 2020
  • Chlorine dioxide is very effective gas for sterilization or disinfection (in manufacturing), and does not produce harmful by-products after use. However, if its concentration exceeds 10 %, it become explosive and cannot be compressed or stored. Therefore, it is necessary to measure its concentration. In this study, the concentration of chlorine dioxide with a high oxidizing strength was measured using a metal oxide sensor. The sensor was a commercially available TGS series from Figaro. The sensitivity of the sensor was inversely proportional to a low concentration of chlorine dioxide gas below 6 ppm and returned to the initial resistance at about 6 ppm. When the gas concentration reached multiples of 10 ppm, resistance of the sensor increased to several megaohms.

A Study on the NOx Reduction of Flue Gas Using Seawater Electrolysis (해수 전기분해를 적용한 배연 탈질 기술에 관한 연구)

  • Kim, Tae-Woo;Kim, Jong-Hwa;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.570-576
    • /
    • 2012
  • In this study, we investigated the characteristics of NO oxidation using un-divided electrolyzed seawater as oxidant. The concentration of available chlorine and the temperature of electrolyzed seawater are increased with electrolysis time in the closed-loop constant current electrolysis system. While NO gas flow through bubbling reactor which is filled with electrolyzed seawater, the oxidation rate of NO to $NO_2$ is increased with the concentration of available chlorine and the temperature. $NO_2$, generated by oxidation reaction, is dissolved in electrolyzed seawater and existed as $HNO_3{^-}$ ion.

Determining chlorine injection intensity in water distribution networks: a comparison of backtracking and water age approaches

  • Flavia D. Frederick;Malvin S. Marlim;Doosun Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.170-170
    • /
    • 2023
  • Providing safe and readily available water is vital to maintain public health. One of the most prevalent methods to prevent the spread of waterborne diseases is applying chlorine injection to the treated water before distribution. During the water transmission and distribution, the chlorine will experience a reduction, which can imply potential risks for human health if it falls below the minimum threshold. The ability to determine the appropriate initial intensity of chlorine at the source would be significant to prevent such problems. This study proposes two methods that integrate hydraulic and water quality modeling to determine the suitable intensity of chlorine to be injected into the source water to maintain the minimum chlorine concentration (e.g., 0.2 mg/l) at each demand node. The water quality modeling employs the first-order decay to estimate the rate of chlorine reduction in the water. The first method utilizes a backtracking algorithm to trace the path of water from the demand node to the source during each time step, which helps to accurately determine the travel time through each pipe and node and facilitate the computation of time-dependent chlorine decay in the water delivery process. However, as a backtracking algorithm is computationally intensive, this study also explores an alternative approach using a water age. This approach estimates the elapsed time of water delivery from the source to the demand node and calculate the time-dependent reduction of chlorine in the water. Finally, this study compares the outcomes of two approaches and determines the suitable and effective method for calculating the chlorine intensity at the source to maintain the minimum chlorine level at demand nodes.

  • PDF

Effect of an Aqueous Chlorine Dioxide Generator and Effect on Disinfection of Fresh Fruits and Vegetables by Immersion Washing (이산화염소수 생성기의 생성효율 및 과.채류에 대한 침지 세정 살균효과)

  • Park, Kee-Jai;Jeong, Jin-Woong;Lim, Jeong-Ho;Jang, Jae-Hee;Park, Hee-Joo
    • Food Science and Preservation
    • /
    • v.15 no.2
    • /
    • pp.236-242
    • /
    • 2008
  • We investigated the optimum concentration of a $NaClO_2$ solution and the amount of gaseous $Cl_2$ for production of high yield and purity of aqueous $ClO_2$ by use of a gaseous chlorine-chlorite $ClO_2$ generator. This system produced lower concentrations of chlorine dioxide and is applicable for direct-use in food processing as a cleaner and sanitizer. The concentration of $NaClO_2$ solution and the amount of gaseous $Cl_2$ was varied from 0.01-0.1% and 100-1,000 g/hr, respectively. The concentrations of chlorite, chlorate, FAC (free available chlorine), and chlorine dioxide that were produced increased with increasing concentration of $NaClO_2$ solution and with the amount of gaseous $Cl_2$. The optimum concentration of $NaClO_2$ solution and amount of gaseous $Cl_2$ were 0.1% and 900 g/hr respectively. $ClO_2$ and FAC produced at these concentrations were 882.0 ppm and 8.0 ppm, with no detection of chlorite and chlorate. The yield and purity of $ClO_2$ were 97.0% and 96.0% respectively. Immersion-cleaning experiments showed that this protocol decreased the level of CFU/g by $10^3$- to $10^4$-fold, with a similar effect on fruit.

The Influence of Chlorine Application on Corrosion and Bacterial Growth in Home Plumbing Systems (급수관내 염소 주입이 미생물의 증식과 부식에 미치는 영향)

  • Kim, Tae-Hyun;Lee, Yoon-Jin;Lim, Seung-Joo
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.431-439
    • /
    • 2006
  • This research was conducted using a model home plumbing system composed of copper, stainless steel, galvanized iron, carbon steel, and PVC (polyvinyl chloride) pipe. The number of bacteria present in stainless steel pipe and PVC was higher than other pipes. High turbidity and zinc release were found in galvanized iron pipe material and detected during the first 6 months. Conversely, there was a decrease in turbidity and zinc release after 6 months resulting in levels similar to other pipes. Copper concentration decreased as operation times increased. In this experiment, the number of bacteria detected in biofilm for a copper pipe continued to increase. Pipe material influenced bacterial numbers in biofilm and water. This showed that elevated chlorine could not control bacterial growth in biofilm for galvanized iron and stainless steel systems. It also suggested that the dosing of chlorine might not be available for all kinds of pipes. Therefore, another complementary method should be introduced to manage biofilm effectively in water distribution systems.

Efficacy of chlorine and lactic acid for reducing pathogenic and spoilage microorganisms on chicken skin (닭고기에서 병원성 및 변질미생물의 감소를 위한 염소와 유산의 병용처리 효과)

  • 이철현;변유성;황보원;강호조
    • Korean Journal of Veterinary Service
    • /
    • v.22 no.4
    • /
    • pp.411-418
    • /
    • 1999
  • In this studies, the ability of chlorine and lactic acid to reduce bacterial population of the pathogenic microorganisms were examined on artificially inoculated chicken skin. About 10$^{5}$ cells of staphylococcus aureus, salmonella enteritidis, listeria monocytogenes and escherichia coli O157:H7 were inoculated in chicken skin. The contaminated samples were washed for 1 min with sodium hypochlorite solutions that contained 2, 5, 10, 20 and 50mg/$\ell$ available chlorine and counted number of the agents. Viable population were no significantly difference (p$\geq$0.05) between concentration of chlorine and strains of the pathogens. In the samples inoculated with pathogens were washed in 20mg/$\ell$ chlorine and then stored at $^5{\circ}C$ for up to 10 days, the initial counts of psychrotrophs and aerobic plate counts were 4.02 to 4.36 log cfu/$\textrm{cm}^2$ and increased slightly in course of time. But 10 days after, the pathogens were a little reduced from 3.66~4.91 log cfu/$\textrm{cm}^2$ to 2.54~4.66 log cfu/$\textrm{cm}^2$. In the case of washed skin with solution of 20mg/$\ell$ chlorine and 0.5% lactic acid then store at $^5{\circ}C$ for up to 10 days, population of psychrotrophs and aerobic plate counts on chicken skin were markedly reduced immediately after treatment, but the numbers of contaminants were slightly increased after 6 and 8 days. Specifically, numbers of St aureus, S enteritidis, L monocytogenes and E coli O157:H7 were reduced to 0.5, 0.4, 0.3 and 1.15 log cfu/$\textrm{cm}^2$ after 10 days of storage, respectively, on aerobic plate counts.

  • PDF

A Consideration of Hydrazine Syntheses (Hydrazine 合成의 一考察)

  • Lee, Hac-Ki
    • Journal of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 1961
  • It is important to study hydrazine because of the development of new uses for its derivatives. The Rasching method is the only satisfactory one for synthesizing hydrazine; it involves the oxidation of ammonia by sodium hypochlorite in the presence of some such catalyst as gelatin. Calcium hypochlorite was substituted for the sodium hypochlorite particularly in this work, applying agar-agar as catalyst. The results of the experiments are as follow: 1. The yield is proportional to the mole-ratio of ammonia to available chlorine in calcium hypochlorite and about 60% is obtained when the ratio is 20. 2. Agar-agar can be used as a catalyst and its proper concentration in the solution is 0.005%. 3. Proper concentration of available chlorine in the reaction solution is 0.23 mole/l. 4. The most effective condition for the reaction is a temperature of $60{\sim}65^{\circ}C.$ maintained for $20{\sim}25min$. 5. The reaction takes place equally well in either an open or closed container. 6. When calcium hypochlorite is applied in place of sodium hypochlorite, the yield of hydrazine is increased as much as 17%. 7. The yield of hydrazine is decreased by eliminating the suspension of $Ca(OH)_2$ which results from the use of calcium hypochlorite. 8. When $Ca(OH)_2$ is added to Rasching process, the yield of hydrazine is raised normally. 9. The fact that some metal ions, such as $Cu^{++},$ inhibit the formation of hydrazine was proved. 10. The suspension of $Ca(OH)_2$ acted as a remarkable adsorbent for $Cu^{++}$ like gelatin. The suspension of $Ca(OH)_2$ which results from the use of calcium hypochlorite acts as a catalyst, absorbing metal ions, to increase the yield of hydrazine. So I think that calcium hypochlorite is a more efficient oxidant than sodium hypochlorite in hydrazine syntheses.

  • PDF

Machine learning model for residual chlorine prediction in sediment basin to control pre-chlorination in water treatment plant (정수장 전염소 공정제어를 위한 침전지 잔류염소농도 예측 머신러닝 모형)

  • Kim, Juhwan;Lee, Kyunghyuk;Kim, Soojun;Kim, Kyunghun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1283-1293
    • /
    • 2022
  • The purpose of this study is to predict residual chlorine in order to maintain stable residual chlorine concentration in sedimentation basin by using artificial intelligence algorithms in water treatment process employing pre-chlorination. Available water quantity and quality data are collected and analyzed statistically to apply into mathematical multiple regression and artificial intelligence models including multi-layer perceptron neural network, random forest, long short term memory (LSTM) algorithms. Water temperature, turbidity, pH, conductivity, flow rate, alkalinity and pre-chlorination dosage data are used as the input parameters to develop prediction models. As results, it is presented that the random forest algorithm shows the most moderate prediction result among four cases, which are long short term memory, multi-layer perceptron, multiple regression including random forest. Especially, it is result that the multiple regression model can not represent the residual chlorine with the input parameters which varies independently with seasonal change, numerical scale and dimension difference between quantity and quality. For this reason, random forest model is more appropriate for predict water qualities than other algorithms, which is classified into decision tree type algorithm. Also, it is expected that real time prediction by artificial intelligence models can play role of the stable operation of residual chlorine in water treatment plant including pre-chlorination process.

The Investigation of Influence of Chlorinated Hydrocarbons on $NO_x$ Formation from Methane Flames (메탄 화염에서 염화 탄화수소 화합물이 질소산화물 생성에 미치는 영향 조사)

  • Jang, Kyoung;Jang, Bong-Choon;Lee, Ki-Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.1
    • /
    • pp.10-16
    • /
    • 2008
  • Numerical simulations of freely propagating premixed flames burning mixtures of methane and chlorinated hydrocarbons in fuel are performed at atmospheric pressure in order to understand the effect of chlorinated hydrocarbons on the formation of nitrogen oxide. A detailed chemical reaction mechanism is used, the adopted scheme involving 89 gas-phase species and 1017 elementary forward reaction steps. Chlorine atoms available from chlorinated hydrocarbons inhibit the formation of nitrogen oxides by lowering the concentration of radical species. The reduction of NO emission index calculated with thermal or prompt NO mechanism is not linear and is probably related to the saturation effect as $CH_3Cl$ addition is increased, In the formation or consumption of nitrogen oxide, the $NO_2$ and NOCl reactions play an important role in lean flames while the HNO reactions do in rich flames. The molar ratio of Cl to H in fuel has an effect on the magnitude of NO emission index.

  • PDF