DOI QR코드

DOI QR Code

누유방지형 감속기의 구조적 안전성 및 토크효율 향상에 관한 연구

A Study on Structural Safety and Advanced Efficiency for a Drywell Type Reducer

  • Oh, Sang-Yeob (School of Automotive Engineering, Kyungpook Nat'l Univ.)
  • 투고 : 2011.04.12
  • 심사 : 2011.08.19
  • 발행 : 2011.11.01

초록

수처리 공정에는 반드시 교반기 전용 감속기가 사용된다. 본 연구에서는 사용 중의 누유를 방지하고 토크효율 향상을 위한 전용 누유방지형 감속기를 개발하였다. 설계 개선된 감속기 시제품을 개발하는데 있어서, CAD 및 CNC 고속가공기를 사용하여 실물모형(Mock up), 금형 등을 제작하였다. 특히 누유방지 구조인 감속기 시제품의 하부 하우징에 대한 구조적 안전성을 평가하고자 상용 유한요소 해석코드인 ALGOR 을 이용하였다. 해석 결과, 최대 von Mises 응력이 항복응력보다 낮은 123 N/$mm^2$ 으로 안전하였으며, 고유진동수는 650~700 Hz 이었다. 그리고 토크효율은 95.87%로서 이전 연구결과 (88.45%)에 비하여 약 8% 향상되었다. 소음 수준은 75 dB, 사용 중 누유 및 이상 소음은 발생하지 않았다. 따라서 항상된 감속기 시제품을 최적 설계하여 성공적으로 개발하였다.

The reducer of the mixer is one of the main parts of the processor used for water and wastewater treatment. In this study, an advanced reducer with a drywell structure was developed in order to prevent oil leakage during operation in the field. During the development of the advanced reducer prototype, a mockup, a metal mold, and a cast were made using CAD and a CNC machine. The structural safety of the reducer prototype's lower housing (drywell structure) was checked using the ALGOR commercial FEM analysis code, which yielded a von Mises stress of about 123 N/mm2, which is below the yield stress of 250 N/$mm^2$, and a natural frequency of about 650-700 Hz. In addition, the torque transmission efficiency for the advanced prototype was 95.87%, which is about 8% more than that found in a previous study, 88.45%, and the sound level was below 75 dB. Furthermore, no oil leakage or abnormal sound or vibration occurred. Therefore, an optimally designed advanced reducer prototype has been successfully developed.

키워드

참고문헌

  1. Korea Water Resources Company, 2010, "Clean water for a Healthy World," www.kwater.or.kr
  2. Oh, S. Y., 2007, "Development of the Reducer with the Drywell Structure and the Motor RPM PID Control for a Water Treatment," J. of Korean Soc. of Mechanical Technology, Vol. 9, No. 2, pp. 31-37.
  3. Lightnin Mixers Korea, 1986, "Mixer Mounting Design Loads for Fixed Mount, Closed Tank Applications," Lightnin Sales Data Book.
  4. Amirtharajah, A., Clark, M. M. and Trussell, R. R, 1991, "Mixing in Coagulation and Flocculation," American Water Works Association Research Foundation.
  5. Coble, R. A., Dickey, D. S., 1987, "Mixing Equipment Impeller Type - A Guide to Performance Evaluation," American Institute of Chemical Engineers Equipment Testing Procedures Committee.
  6. Hicks, R. W. and Dickey, D. S., 1976, "Applications Analysis for Turbine Agitators," Chemical Eng., pp. 72-76.
  7. Hong, J. P., 2001, "Mechanical Design," Books-Hill Co., pp. 516-530.
  8. John, A. S., 1977, "Introduction to Manufacturing Processes," NcGraw-Hill, New York.
  9. Robert, C. J. and Kurt, M. M., 2002, "Fundamentals of Machine Component Design, 3rd edition," WILEY, pp. 661-701.
  10. Flender, 2000, "Technical Handbook, 2nd Edition," Flender Co., pp. 108-134.
  11. SAE J1540, 2000, "Manual Transmission Efficiency and Parasitic Loss Measurement."
  12. MIL-G-17859D, 1993, "Gear Assembly, Propulsion (Naval shipboard use)."
  13. BISON, "Gear motor Efficiency," Bison Gear & Eng. Corp., 1-800-AT-BISON, p. 63.
  14. AGMA 6010-E88, 2009, "Standard for Spur, Helical, Herringbone, and Bevel Enclosed Drivers."