DOI QR코드

DOI QR Code

Performance Comparison of Continuous Reactors for Bioethanol Production Based on Glycerol

글리세롤 기반의 바이오에탄올 생산을 위한 연속생산반응기의 성능 비교

  • Lee, Sang-Jun (Department of Chemical Biological Engineering, Korea University) ;
  • Song, Yoon-Seok (Department of Chemical Biological Engineering, Korea University) ;
  • Kim, Sung-Bong (Department of Chemical Biological Engineering, Korea University) ;
  • Kang, Sung-Woo (Department of Chemical Biological Engineering, Korea University) ;
  • Han, Sung-Ok (School of Life Science and Biotechnology, Korea University) ;
  • Park, Chul-Hwan (Department of Chemical Engineering, Kwangwoon University) ;
  • Kim, Seung-Wook (Department of Chemical Biological Engineering, Korea University)
  • 이상준 (고려대학교 화공생명공학과) ;
  • 송윤석 (고려대학교 화공생명공학과) ;
  • 김성봉 (고려대학교 화공생명공학과) ;
  • 강성우 (고려대학교 화공생명공학과) ;
  • 한성옥 (고려대학교 생명과학부) ;
  • 박철환 (광운대학교 화학공학과) ;
  • 김승욱 (고려대학교 화공생명공학과)
  • Received : 2011.07.06
  • Accepted : 2011.08.08
  • Published : 2011.08.30

Abstract

Ethanol production using glycerol as a carbon source was performed by Enterobacter aerogenes immobilized on calcium alginate beads. To improve the ethanol production, the optimal conditions such as loading amount of immobilized cells and glycerol concentration were investigated. The optimal loading amount of immobilized cells and glycerol concentration were 10 mL of calcium alginate bead and 10 g/L, respectively. Consequently, glycerol consumption rate, ethanol concentration and yield were 0.32 g/$L{\cdot}h$, 3.38 g/L and 0.43 g/g on the batch production, respectively. Continuous production of ethanol was successfully achieved using two types of immobilized cell reactors (continuous stirred tank reactor and packed bed reactor) from 10 g/L of glycerol. In the continuous stirred tank reactor, glycerol consumption, ethanol concentration, specific productivity and yield were 9.8 g, 4.67 g/L, 1.17 g/$L{\cdot}h$, 0.48 g/g, respectively. The concentration of produced ethanol was 38-44% higher comparison to batch fermentation, and continuous stirred tank reactor showed better performance than packed bed reactor.

Keywords

References

  1. Sabourin-Provost, G. and P. C. Hallenbeck (2009) High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Bioresour. Technol. 100: 3513-3517. https://doi.org/10.1016/j.biortech.2009.03.027
  2. Yazdani, S. S. and R. Gonzalez (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr. Opin. Biotech. 18: 213-219. https://doi.org/10.1016/j.copbio.2007.05.002
  3. González-Pajuelo, M., J. C. Andrade, and I. Vasconcelos (2004) Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J. Ind. Microbiol. Biot. 31: 442-446. https://doi.org/10.1007/s10295-004-0168-z
  4. Franceschina, G., A. Zamboni, F. Bezzoa, and A. Bertucco (2008) Ethanol from corn: a technicaland economical assessment based on different scenarios. Chem. Eng. Res. Des. 86: 488-498. https://doi.org/10.1016/j.cherd.2008.01.001
  5. Aristidou, A. and M. Penttila (2000) Metabolic engineering applications to renewable resource utilization. Curr. Opin. Biotechnol. 11: 187-198 https://doi.org/10.1016/S0958-1669(00)00085-9
  6. Klinke, H. B., A. B. Thomsen, and B. K. Ahring (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 66: 10-26. https://doi.org/10.1007/s00253-004-1642-2
  7. Mu, Y., H. Teng, D. J. Zhang, W. Wang, and Z. L. Xiu (2006) Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol biodiesel preparations. Biotechnol. Lett. 28: 1755-1759. https://doi.org/10.1007/s10529-006-9154-z
  8. Biebl, H. (2001) Fermentation of glycerol by Clostridium pasteurianum-batch and continuous culture studies. J. Ind. Microbiol. Biot. 27: 18-26. https://doi.org/10.1038/sj.jim.7000155
  9. Malaoui, H. and R. Marczak (2001) Separation and characterization of the 1,3-propanediol and glycerol dehydrogenase activities from Clostridium butyricum E5 wild-type and mutant D. J. Appl. Microbiol. 90: 1006-1014. https://doi.org/10.1046/j.1365-2672.2001.01335.x
  10. Barbirato, F. and A. Bories (1997) Relationship between the physiology of Enterobacter agglomerans CNCM 1210 grown anaerobically on glycerol and the culture conditions. Res. Microbiol. 148: 475-484. https://doi.org/10.1016/S0923-2508(97)88345-3
  11. Talarico, T. L., L. T. Axelsson, J. Novotny, M. Fiuzat, and W. J. Dobrogosz (1990) Utilization of glycerol as a hydrogen acceptor by Lactobacillus reuteri: purification of 1,3-propanediol: $NAD^+$ oxidoreductase. Appl. Environ. Microb. 56: 943-948.
  12. Ito, T., Y. Nakashimada, K. Senba, T. Matsui, and N. Nishio (2005) Hydrogen and ethanol production from glycerolcontaining wastes discharged after biodiesel manufacturing process. J. Biosci. Bioeng. 100: 260-265. https://doi.org/10.1263/jbb.100.260
  13. Lee, K. H., I. S. Choi, Y. G. Kim, D. J. Yang, and H. J. Bae (2011) Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads. Bioresour. Technol. 102: 8191-8198. https://doi.org/10.1016/j.biortech.2011.06.063
  14. Kourkoutas, Y., A. Bekatorou, I. M. Banat, R. Marchant, and A. A. Koutinas (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol. 21: 377-397. https://doi.org/10.1016/j.fm.2003.10.005
  15. Idris, A. and W. suzana (2006) Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. Process Biochem. 41: 1117-1123. https://doi.org/10.1016/j.procbio.2005.12.002
  16. Madigan, M. T., J. M. Martinko, P. V. Dunlap, and D. P. Clark (2009) Brock biology of microorganisms. 12th ed., pp. 167-169. Pearson Education, Pearson Benjamin Cummings, San Francisco, USA.
  17. Ginkel, S. V., S. Sung, and J. J. Lay (2001) Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol. 35: 4726-4730. https://doi.org/10.1021/es001979r
  18. Jung, H., P. J. Seong, A. R. Go, S. J. Lee, S. W. Kim, S. O. Han, J. Cho, D. H. Cho, Y. H. Kim, and C. Park (2011) Bioethanol production based on crude glycerol using Enterobacter aerogenes. Korean J. Biotechnol. Bioeng. 26: 223-228.
  19. Zhao, J. and L. Xia (2010) Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells. Biochem. Eng. J. 49: 28-32. https://doi.org/10.1016/j.bej.2009.11.007
  20. Najafpour, G., H. Younesi, and K. Syahidah Ku Ismail (2004) Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Bioresour. Technol. 92: 251-260. https://doi.org/10.1016/j.biortech.2003.09.009
  21. Nikolic, S., L. Mojovic, D. Pejin, M. Rakin, and M. Vukasinovic (2010) Production of bioethanol from corn meal hydrolyzates by free and immobilized cells of Saccharomyces cerevisiae var. ellipsoideus. Biomass Bioenerg. 34: 1449-1456. https://doi.org/10.1016/j.biombioe.2010.04.008