Browse > Article
http://dx.doi.org/10.7841/ksbbj.2011.26.4.328

Performance Comparison of Continuous Reactors for Bioethanol Production Based on Glycerol  

Lee, Sang-Jun (Department of Chemical Biological Engineering, Korea University)
Song, Yoon-Seok (Department of Chemical Biological Engineering, Korea University)
Kim, Sung-Bong (Department of Chemical Biological Engineering, Korea University)
Kang, Sung-Woo (Department of Chemical Biological Engineering, Korea University)
Han, Sung-Ok (School of Life Science and Biotechnology, Korea University)
Park, Chul-Hwan (Department of Chemical Engineering, Kwangwoon University)
Kim, Seung-Wook (Department of Chemical Biological Engineering, Korea University)
Publication Information
KSBB Journal / v.26, no.4, 2011 , pp. 328-332 More about this Journal
Abstract
Ethanol production using glycerol as a carbon source was performed by Enterobacter aerogenes immobilized on calcium alginate beads. To improve the ethanol production, the optimal conditions such as loading amount of immobilized cells and glycerol concentration were investigated. The optimal loading amount of immobilized cells and glycerol concentration were 10 mL of calcium alginate bead and 10 g/L, respectively. Consequently, glycerol consumption rate, ethanol concentration and yield were 0.32 g/$L{\cdot}h$, 3.38 g/L and 0.43 g/g on the batch production, respectively. Continuous production of ethanol was successfully achieved using two types of immobilized cell reactors (continuous stirred tank reactor and packed bed reactor) from 10 g/L of glycerol. In the continuous stirred tank reactor, glycerol consumption, ethanol concentration, specific productivity and yield were 9.8 g, 4.67 g/L, 1.17 g/$L{\cdot}h$, 0.48 g/g, respectively. The concentration of produced ethanol was 38-44% higher comparison to batch fermentation, and continuous stirred tank reactor showed better performance than packed bed reactor.
Keywords
Immobilization; Enterobacter aerogenes; ethanol; glycerol; continuous production;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Madigan, M. T., J. M. Martinko, P. V. Dunlap, and D. P. Clark (2009) Brock biology of microorganisms. 12th ed., pp. 167-169. Pearson Education, Pearson Benjamin Cummings, San Francisco, USA.
2 Ginkel, S. V., S. Sung, and J. J. Lay (2001) Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol. 35: 4726-4730.   DOI   ScienceOn
3 Jung, H., P. J. Seong, A. R. Go, S. J. Lee, S. W. Kim, S. O. Han, J. Cho, D. H. Cho, Y. H. Kim, and C. Park (2011) Bioethanol production based on crude glycerol using Enterobacter aerogenes. Korean J. Biotechnol. Bioeng. 26: 223-228.
4 Zhao, J. and L. Xia (2010) Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells. Biochem. Eng. J. 49: 28-32.   DOI   ScienceOn
5 Najafpour, G., H. Younesi, and K. Syahidah Ku Ismail (2004) Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Bioresour. Technol. 92: 251-260.   DOI   ScienceOn
6 Nikolic, S., L. Mojovic, D. Pejin, M. Rakin, and M. Vukasinovic (2010) Production of bioethanol from corn meal hydrolyzates by free and immobilized cells of Saccharomyces cerevisiae var. ellipsoideus. Biomass Bioenerg. 34: 1449-1456.   DOI   ScienceOn
7 Aristidou, A. and M. Penttila (2000) Metabolic engineering applications to renewable resource utilization. Curr. Opin. Biotechnol. 11: 187-198   DOI   ScienceOn
8 Klinke, H. B., A. B. Thomsen, and B. K. Ahring (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 66: 10-26.   DOI   ScienceOn
9 Mu, Y., H. Teng, D. J. Zhang, W. Wang, and Z. L. Xiu (2006) Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol biodiesel preparations. Biotechnol. Lett. 28: 1755-1759.   DOI   ScienceOn
10 Biebl, H. (2001) Fermentation of glycerol by Clostridium pasteurianum-batch and continuous culture studies. J. Ind. Microbiol. Biot. 27: 18-26.   DOI   ScienceOn
11 Malaoui, H. and R. Marczak (2001) Separation and characterization of the 1,3-propanediol and glycerol dehydrogenase activities from Clostridium butyricum E5 wild-type and mutant D. J. Appl. Microbiol. 90: 1006-1014.   DOI   ScienceOn
12 Barbirato, F. and A. Bories (1997) Relationship between the physiology of Enterobacter agglomerans CNCM 1210 grown anaerobically on glycerol and the culture conditions. Res. Microbiol. 148: 475-484.   DOI   ScienceOn
13 Talarico, T. L., L. T. Axelsson, J. Novotny, M. Fiuzat, and W. J. Dobrogosz (1990) Utilization of glycerol as a hydrogen acceptor by Lactobacillus reuteri: purification of 1,3-propanediol: $NAD^+$ oxidoreductase. Appl. Environ. Microb. 56: 943-948.
14 Ito, T., Y. Nakashimada, K. Senba, T. Matsui, and N. Nishio (2005) Hydrogen and ethanol production from glycerolcontaining wastes discharged after biodiesel manufacturing process. J. Biosci. Bioeng. 100: 260-265.   DOI   ScienceOn
15 Lee, K. H., I. S. Choi, Y. G. Kim, D. J. Yang, and H. J. Bae (2011) Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads. Bioresour. Technol. 102: 8191-8198.   DOI   ScienceOn
16 Kourkoutas, Y., A. Bekatorou, I. M. Banat, R. Marchant, and A. A. Koutinas (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol. 21: 377-397.   DOI   ScienceOn
17 Idris, A. and W. suzana (2006) Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. Process Biochem. 41: 1117-1123.   DOI   ScienceOn
18 González-Pajuelo, M., J. C. Andrade, and I. Vasconcelos (2004) Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J. Ind. Microbiol. Biot. 31: 442-446.   DOI   ScienceOn
19 Sabourin-Provost, G. and P. C. Hallenbeck (2009) High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Bioresour. Technol. 100: 3513-3517.   DOI   ScienceOn
20 Yazdani, S. S. and R. Gonzalez (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr. Opin. Biotech. 18: 213-219.   DOI   ScienceOn
21 Franceschina, G., A. Zamboni, F. Bezzoa, and A. Bertucco (2008) Ethanol from corn: a technicaland economical assessment based on different scenarios. Chem. Eng. Res. Des. 86: 488-498.   DOI   ScienceOn