Acknowledgement
Supported by : 차세대 성장 동력 바이오신약장기사업단
References
- Dutt, M. and G. K. Khuller (2001) Sustained release of isoniazid from a single injectable dose of poly (D,L-lactide-co-glycolide) microparticles as a therapeutic approach towards tuberculosis. Int. J. Antimicrob. Agents 17: 115-122. https://doi.org/10.1016/S0924-8579(00)00330-7
- Amperiadou, A. and M. Georgarakis (1995) Controlled release salbutamol sulphate microcapsules prepared by emulsion solvent-evaporation technique and study on the release affected parameters. Int. J. Pharm. 115: 1-8. https://doi.org/10.1016/0378-5173(95)00223-6
- Zhang, P., L. Chen, W. Gu, Z. Xu, Y. Gao, and Y. Li (2007) In vitro and in vivo evaluation of donepezil-sustained release microparticles for the treatment of Alzheimer's disease. Biomater. 28: 1882-1888. https://doi.org/10.1016/j.biomaterials.2006.12.016
- Abdel-Rahman, S. I., G. M. Mahrous, and M. El-Badry (2009) Preparation and comparative evaluation of sustained release metoclopramide hydrochloride matrix tablets. Saudi Pharm. J. 17: 283-288. https://doi.org/10.1016/j.jsps.2009.10.004
- Feng, S. S. and S. Chien (2003) Chemotherapeutic engineering: Application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem. Eng. Sci. 58: 4087-4114. https://doi.org/10.1016/S0009-2509(03)00234-3
- Persidis, A. (1999) Cancer multidrug resistance. Nature Biotech. 17: 94-95. https://doi.org/10.1038/5289
- Yeo, Y., N. Baek, and K. Park (2001) Microencapsulation methods for delivery of protein drugs. Biotechnol. Bioprocess Eng. 6: 213-230. https://doi.org/10.1007/BF02931982
- Park, J. H., M. Ye, and K. Park (2005) Biodegradable polymers for microencapsulation of drugs. Molecules 10: 146-161. https://doi.org/10.3390/10010146
- Langer, R. (2006) Biomaterials for drug delivery and tissue engineering. MRS Bull. 31: 477-485 https://doi.org/10.1557/mrs2006.122
- Joo, H. J., I.-I. Jung, G. Lim, and J.-H. Ryu (2011) Production of gemcitabine-loaded poly (L-lactic acid) microparticles using supercritical carbon dioxide: Effect of process parameters. Kor. Soci. Biotechnol. Bioeng. J. 26: 69-77.
- Anderson, J. M. and M. S. Shive (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Del. Rev. 28: 5-24. https://doi.org/10.1016/S0169-409X(97)00048-3
- Jain, R. A. (2000) The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide) (PLGA) devices. Biomater. 21: 2475-2490. https://doi.org/10.1016/S0142-9612(00)00115-0
- Qiao, M., D. Chen, X. Ma, and Y. Liu (2005) Injectable biodegradable temperature-responsive PLGA-PEG-PLGAcopolymers: Synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Int. J. Pharm. 294: 103-112. https://doi.org/10.1016/j.ijpharm.2005.01.017
- Hagan, S. A., A. G. A. Coombes, M. C. Garnett, S. E. Dunn, M. C. Davies, L. Illum, and S. S. Davis (1996) Polylactide-poly (ethylene glycol) copolymers as drug delivery systems: 1. Characterization of water dispersible micelle-forming systems. Langmuir 12: 2153-2161. https://doi.org/10.1021/la950649v
- Chen, L., Z. Xie, J. Hu, X. Chen, and X. Jing (2007) Enantiomeric PLA-PEG block copolymers and their stereocomplex micelles used as rifampin delivery. J. Nanopart. Res. 9: 777-785. https://doi.org/10.1007/s11051-006-9103-8
- de Faria, T. J., A. M. de Campos, and E. L. Senna (2005) Preparation and characterization of poly (D,L-lactide) (PLA) and poly (D,L-lactide)-poly (ethylene glycol) (PLA-PEG) nanocapsules containing antitumoral agent methotrexate. Macromol. Symp. 229: 228-233. https://doi.org/10.1002/masy.200551128
- Matsushima, A., H. Nishimura, Y. Ashihara, Y. Yakata, and Y. Inada (1980) Modification of E. coli asparaginase with 2,4-bis (o-methoxypoly-ethylene glycol)-6-chloro-s-triazene (activated PEG2); disappearance of binding ability towards anti-serum and retention of enzymatic activity. Chem. Lett. 9:773-776. https://doi.org/10.1246/cl.1980.773
- Hinds, K. D. and S. W. Kim (2002) Effects of PEG conjugation on insulin properties. Adv. Drug Del. Rev. 54: 505-530. https://doi.org/10.1016/S0169-409X(02)00025-X
- Tsubery, H., M. Mironchik, M.Fridkin, and Y. Shechter (2004) Prolonging the action of protein and peptide drugs by a novel approach of reversible polyethylene glycol modification. J. Biol. Chem. 279: 38118-38124. https://doi.org/10.1074/jbc.M405155200
- Mangeold, C. (2001) Chemotherapy for advanced non-small cell lung cancer. Semin. Oncol. 28: 1-6. https://doi.org/10.1053/sonc.2001.19718
- Locher, C., E. Fabre-Guillevin, F. Brunetti, J. Auroux, J. C. Delchier, P. Piedbois, and L. Zelek (2008) Fixed-dose rate gemcitabine in elderly patients with advanced pancreatic cancer: An observational study. Crit. Rev. Oncol. Hematol. 68: 178-182. https://doi.org/10.1016/j.critrevonc.2008.06.010
- Fruscella, E., D. Gallo, G. Ferrandina, G. D'Agostino, and G. Scambia (2003) Gemcitabine: current role and future options in the treatment of ovarian cancer. Crit. Rev. Oncol. Hematol. 48: 81-88. https://doi.org/10.1016/S1040-8428(03)00119-7
- Wirk, B. and E. Perez (2006) Role of Gemcitabine in Breast Cancer Management: An Update. Semin. Oncol. 33: 6-14.
- Maase, H. V. D. (2001) Gemcitabine in advanced bladder cancer. Semin. Oncol. 28: 11-14. https://doi.org/10.1053/sonc.2001.24369
- Pasut, G., F. Canal, L. D. Via, S. Arpicco, F. M. Veronese, and O. Schiavon (2006) Antitumoral activity of PEG-gemcitabine prodrugs targeted by folic acid. J. of Cont. Rel. 127: 239-248.
- Celano1, M., M. G. Calvagno, S. Bulotta, D. Paolino, F. Arturi, D. Rotiroti, S. Filetti, M. Fresta, and D. Russo (2004) Cytotoxic effects of Gemcitabine-loaded liposomes in human anaplastic thyroid carcinoma cells. BMC Cancer 4: 1-5. https://doi.org/10.1186/1471-2407-4-1
-
Gang, J., S.-B. Park, W. C. Hyung, E. H. Choi, J. Wen, H.-S. Kim, Y.-G. Shul, S. J. Haam, and S. Y. Song (2007) Magnetic poly
$\varepsilon$ -caprolactone nanoparticles containing$Fe_3O_4$ and gemcitabine enhance anti-tumor effect in pancreatic cancer xenograft mouse model. J. Drug Targeting 15: 445-453. https://doi.org/10.1080/10611860701453901 - Lee, S. Y., S. H. Lee, and J. H. Kim (2000) Synthesis and characterization of linear and star-shaped poly (lactic acid) stereo-block copolymers. Polymer (Korea) 24: 638-645.
- O'Donnell, P. B. and J. W. McGinity (1997) Preparation of microsphere by the solvent evaporation technique. Adv. Drug Del. Rev. 28: 25-42. https://doi.org/10.1016/S0169-409X(97)00049-5
- Mokleby, T. (2009) Active loading of gemcitabine into liposomes. Master Thesis. University of Tromso, Tromso, Norway.
- Pistel, K.-F. and T. Kissel (2000) Effects of salt addition on the microencapsulation of proteins using W/O/W double emulsion technique. J. Microencapsul. 17: 467-483. https://doi.org/10.1080/026520400405723
- Rosca, I. D., F. Watari, and M. Uo (2004) Microparticle formation and its mechanism in single and double emulsion solvent evaporation. J. Contr. Rel. 99: 271-280. https://doi.org/10.1016/j.jconrel.2004.07.007
- Wei, Q., W. Wei, R. Tian, L.-Y. Wang, Z.-G. and Sua, G.-H. Ma (2008) Preparation of uniform-sized PELA microspheres with high encapsulation efficiency of antigen by premix membrane emulsification. J. Colloid Interface Sci. 323: 267-273. https://doi.org/10.1016/j.jcis.2008.04.058
- Meng, F. T., G. H. Ma, W. Qiu, and Z. G. Su (2003) W/O/W double emulsion technique using ethyl acetate as organic solvent: effect of its diffusion rate on the characteristics of microparticles. J. Control. Rel. 91: 407-416. https://doi.org/10.1016/S0168-3659(03)00273-6
- Cohen-Sela, E., M. Chorny, N. Koroukhov, H. D. Danenberg, and G. Golomb (2009) A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J. Control. Rel. 133: 90-95. https://doi.org/10.1016/j.jconrel.2008.09.073