DOI QR코드

DOI QR Code

Preparation of Gemcitabine-Loaded Methoxy Poly(ethylene glycol)-b-Poly(L-lactide) Microparticles Using W/O/W Double Emulsion

W/O/W 다중유화법을 이용한 젬시타빈 함유 Methoxy Poly(ethylene glycol)-b-Poly(L-lactide) 미립자 제조

  • Ryu, Jong-Hoon (Department of Chemical Engineering, The University of Suwon) ;
  • Jung, In-Il (Department of Chemical Engineering, The University of Suwon) ;
  • Lee, Ji-Eun (Department of Chemical Engineering, The University of Suwon) ;
  • Lim, Gio-Bin (Department of Chemical Engineering, The University of Suwon)
  • Received : 2011.05.17
  • Accepted : 2011.06.13
  • Published : 2011.08.30

Abstract

In this study, gemcitabine-loaded methoxy poly(ethylene glycol)-b-poly(L-lactide) (MPEG-PLLA) microparticles with different PEG block lengths were prepared by a W/O/W double emulsion technique. The present study focuses on the investigation of the influence of various preparative parameters such as the ratio of internal water phase and oil phase, polymer concentration, solvent composition of organic phase and salt concentration of external water phase on the morphology and encapsulation efficiency of the microparticles. The microparticles fabricated at high volume ratios of internal water phase to oil phase and at high polymer concentrations showed a relatively high encapsulation efficiency and low porosity. When a dichloromethane/ethyl acetate mixture was used as solvent, both the encapsulation efficiency and drug loading of the microparticles decreased as the level of ethyl acetate increased. The addition of a salt (NaCl) to the external water phase significantly improved the encapsulation efficiency up to 40%, and the microparticles became more spherical with their size and porosity decreased.

Keywords

Acknowledgement

Supported by : 차세대 성장 동력 바이오신약장기사업단

References

  1. Dutt, M. and G. K. Khuller (2001) Sustained release of isoniazid from a single injectable dose of poly (D,L-lactide-co-glycolide) microparticles as a therapeutic approach towards tuberculosis. Int. J. Antimicrob. Agents 17: 115-122. https://doi.org/10.1016/S0924-8579(00)00330-7
  2. Amperiadou, A. and M. Georgarakis (1995) Controlled release salbutamol sulphate microcapsules prepared by emulsion solvent-evaporation technique and study on the release affected parameters. Int. J. Pharm. 115: 1-8. https://doi.org/10.1016/0378-5173(95)00223-6
  3. Zhang, P., L. Chen, W. Gu, Z. Xu, Y. Gao, and Y. Li (2007) In vitro and in vivo evaluation of donepezil-sustained release microparticles for the treatment of Alzheimer's disease. Biomater. 28: 1882-1888. https://doi.org/10.1016/j.biomaterials.2006.12.016
  4. Abdel-Rahman, S. I., G. M. Mahrous, and M. El-Badry (2009) Preparation and comparative evaluation of sustained release metoclopramide hydrochloride matrix tablets. Saudi Pharm. J. 17: 283-288. https://doi.org/10.1016/j.jsps.2009.10.004
  5. Feng, S. S. and S. Chien (2003) Chemotherapeutic engineering: Application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem. Eng. Sci. 58: 4087-4114. https://doi.org/10.1016/S0009-2509(03)00234-3
  6. Persidis, A. (1999) Cancer multidrug resistance. Nature Biotech. 17: 94-95. https://doi.org/10.1038/5289
  7. Yeo, Y., N. Baek, and K. Park (2001) Microencapsulation methods for delivery of protein drugs. Biotechnol. Bioprocess Eng. 6: 213-230. https://doi.org/10.1007/BF02931982
  8. Park, J. H., M. Ye, and K. Park (2005) Biodegradable polymers for microencapsulation of drugs. Molecules 10: 146-161. https://doi.org/10.3390/10010146
  9. Langer, R. (2006) Biomaterials for drug delivery and tissue engineering. MRS Bull. 31: 477-485 https://doi.org/10.1557/mrs2006.122
  10. Joo, H. J., I.-I. Jung, G. Lim, and J.-H. Ryu (2011) Production of gemcitabine-loaded poly (L-lactic acid) microparticles using supercritical carbon dioxide: Effect of process parameters. Kor. Soci. Biotechnol. Bioeng. J. 26: 69-77.
  11. Anderson, J. M. and M. S. Shive (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Del. Rev. 28: 5-24. https://doi.org/10.1016/S0169-409X(97)00048-3
  12. Jain, R. A. (2000) The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide) (PLGA) devices. Biomater. 21: 2475-2490. https://doi.org/10.1016/S0142-9612(00)00115-0
  13. Qiao, M., D. Chen, X. Ma, and Y. Liu (2005) Injectable biodegradable temperature-responsive PLGA-PEG-PLGAcopolymers: Synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Int. J. Pharm. 294: 103-112. https://doi.org/10.1016/j.ijpharm.2005.01.017
  14. Hagan, S. A., A. G. A. Coombes, M. C. Garnett, S. E. Dunn, M. C. Davies, L. Illum, and S. S. Davis (1996) Polylactide-poly (ethylene glycol) copolymers as drug delivery systems: 1. Characterization of water dispersible micelle-forming systems. Langmuir 12: 2153-2161. https://doi.org/10.1021/la950649v
  15. Chen, L., Z. Xie, J. Hu, X. Chen, and X. Jing (2007) Enantiomeric PLA-PEG block copolymers and their stereocomplex micelles used as rifampin delivery. J. Nanopart. Res. 9: 777-785. https://doi.org/10.1007/s11051-006-9103-8
  16. de Faria, T. J., A. M. de Campos, and E. L. Senna (2005) Preparation and characterization of poly (D,L-lactide) (PLA) and poly (D,L-lactide)-poly (ethylene glycol) (PLA-PEG) nanocapsules containing antitumoral agent methotrexate. Macromol. Symp. 229: 228-233. https://doi.org/10.1002/masy.200551128
  17. Matsushima, A., H. Nishimura, Y. Ashihara, Y. Yakata, and Y. Inada (1980) Modification of E. coli asparaginase with 2,4-bis (o-methoxypoly-ethylene glycol)-6-chloro-s-triazene (activated PEG2); disappearance of binding ability towards anti-serum and retention of enzymatic activity. Chem. Lett. 9:773-776. https://doi.org/10.1246/cl.1980.773
  18. Hinds, K. D. and S. W. Kim (2002) Effects of PEG conjugation on insulin properties. Adv. Drug Del. Rev. 54: 505-530. https://doi.org/10.1016/S0169-409X(02)00025-X
  19. Tsubery, H., M. Mironchik, M.Fridkin, and Y. Shechter (2004) Prolonging the action of protein and peptide drugs by a novel approach of reversible polyethylene glycol modification. J. Biol. Chem. 279: 38118-38124. https://doi.org/10.1074/jbc.M405155200
  20. Mangeold, C. (2001) Chemotherapy for advanced non-small cell lung cancer. Semin. Oncol. 28: 1-6. https://doi.org/10.1053/sonc.2001.19718
  21. Locher, C., E. Fabre-Guillevin, F. Brunetti, J. Auroux, J. C. Delchier, P. Piedbois, and L. Zelek (2008) Fixed-dose rate gemcitabine in elderly patients with advanced pancreatic cancer: An observational study. Crit. Rev. Oncol. Hematol. 68: 178-182. https://doi.org/10.1016/j.critrevonc.2008.06.010
  22. Fruscella, E., D. Gallo, G. Ferrandina, G. D'Agostino, and G. Scambia (2003) Gemcitabine: current role and future options in the treatment of ovarian cancer. Crit. Rev. Oncol. Hematol. 48: 81-88. https://doi.org/10.1016/S1040-8428(03)00119-7
  23. Wirk, B. and E. Perez (2006) Role of Gemcitabine in Breast Cancer Management: An Update. Semin. Oncol. 33: 6-14.
  24. Maase, H. V. D. (2001) Gemcitabine in advanced bladder cancer. Semin. Oncol. 28: 11-14. https://doi.org/10.1053/sonc.2001.24369
  25. Pasut, G., F. Canal, L. D. Via, S. Arpicco, F. M. Veronese, and O. Schiavon (2006) Antitumoral activity of PEG-gemcitabine prodrugs targeted by folic acid. J. of Cont. Rel. 127: 239-248.
  26. Celano1, M., M. G. Calvagno, S. Bulotta, D. Paolino, F. Arturi, D. Rotiroti, S. Filetti, M. Fresta, and D. Russo (2004) Cytotoxic effects of Gemcitabine-loaded liposomes in human anaplastic thyroid carcinoma cells. BMC Cancer 4: 1-5. https://doi.org/10.1186/1471-2407-4-1
  27. Gang, J., S.-B. Park, W. C. Hyung, E. H. Choi, J. Wen, H.-S. Kim, Y.-G. Shul, S. J. Haam, and S. Y. Song (2007) Magnetic poly $\varepsilon$-caprolactone nanoparticles containing $Fe_3O_4$ and gemcitabine enhance anti-tumor effect in pancreatic cancer xenograft mouse model. J. Drug Targeting 15: 445-453. https://doi.org/10.1080/10611860701453901
  28. Lee, S. Y., S. H. Lee, and J. H. Kim (2000) Synthesis and characterization of linear and star-shaped poly (lactic acid) stereo-block copolymers. Polymer (Korea) 24: 638-645.
  29. O'Donnell, P. B. and J. W. McGinity (1997) Preparation of microsphere by the solvent evaporation technique. Adv. Drug Del. Rev. 28: 25-42. https://doi.org/10.1016/S0169-409X(97)00049-5
  30. Mokleby, T. (2009) Active loading of gemcitabine into liposomes. Master Thesis. University of Tromso, Tromso, Norway.
  31. Pistel, K.-F. and T. Kissel (2000) Effects of salt addition on the microencapsulation of proteins using W/O/W double emulsion technique. J. Microencapsul. 17: 467-483. https://doi.org/10.1080/026520400405723
  32. Rosca, I. D., F. Watari, and M. Uo (2004) Microparticle formation and its mechanism in single and double emulsion solvent evaporation. J. Contr. Rel. 99: 271-280. https://doi.org/10.1016/j.jconrel.2004.07.007
  33. Wei, Q., W. Wei, R. Tian, L.-Y. Wang, Z.-G. and Sua, G.-H. Ma (2008) Preparation of uniform-sized PELA microspheres with high encapsulation efficiency of antigen by premix membrane emulsification. J. Colloid Interface Sci. 323: 267-273. https://doi.org/10.1016/j.jcis.2008.04.058
  34. Meng, F. T., G. H. Ma, W. Qiu, and Z. G. Su (2003) W/O/W double emulsion technique using ethyl acetate as organic solvent: effect of its diffusion rate on the characteristics of microparticles. J. Control. Rel. 91: 407-416. https://doi.org/10.1016/S0168-3659(03)00273-6
  35. Cohen-Sela, E., M. Chorny, N. Koroukhov, H. D. Danenberg, and G. Golomb (2009) A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J. Control. Rel. 133: 90-95. https://doi.org/10.1016/j.jconrel.2008.09.073