• Title/Summary/Keyword: ethanol

Search Result 9,225, Processing Time 0.043 seconds

Ethanol Tolerance of Campylobacter jejuni by Ethanol Shock (Ethanol 충격에 의한 Campylobacter jejuni 의 Ethanol 내성)

  • 김치경;가익현
    • Korean Journal of Microbiology
    • /
    • v.30 no.5
    • /
    • pp.377-382
    • /
    • 1992
  • The responses of C. jejuni to ethanol shock were studied for their survival. synthesis of ethanol shock proteins, and increased survival at higher concentration of ethanol upon prior treatments of ethanol. When C. jejuni were shocked with ethanol at 1. 3. and 5% for 60. 30 and 10 minutes, respectively. those cells synthesized the ethanol shock proteins of 90, 66, 60, 45, and 24 kd in molecular weight. When the C. ,jejuni shocked with 1 and 3% ethanol were exposed to 3 and 5% ethanol for 30 minutes. their survival rates were increased by $10^1$~$10^2$ as compared with those of the cells without ethanol-shock. In the same way. C. ,jejuni shocked with 5% ethanol for 10 minutes :.bowed about 102 times higher survival rates than the cells without ethanol-shock. This result suggests that C jejuni shocked with I-5% ethanol for 10-30 minutes synthesized five kinds of ethanol shock proteins. and that the shock proteins contributed to increase ethanol tolerance for their survival at the higher concentrations of ethanol.

  • PDF

A Study on Characteristic of the Bio-ethanol Produced on Fruit Wastes for Direct Ethanol Fuel Cell (DEFC) (과일폐기물을 이용한 DEFC용 바이오에탄올 제조 및 특성에 관한 연구)

  • Lee, Nam-Jin;Kim, Hyun-Soo;Cha, In-Su;Choi, Jeong-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.257-264
    • /
    • 2011
  • This study discribes performance of DEFC (Direct Ethanol Fuel Cell) utilized bio-ethanol based on fruit wastes. To produce the bio-ethanol, fruit wastes were treated at temperature $120^{\circ}C$ and 90minutes in acid pre-treatment. After pre-treatment was done, alcohol fermentation process was running. Initial alcohol concentration was 5%. Using the multi coloumn distillation system, more than 95% ethanol was distilled and each component of bio-ethanol was analyzed. In DEFC performance test, it was revealed that cell performance was much higher than that of ethanol. Comparing ethanol with mixed fuel (bio-ethanol (10%) + ethanol (90%)), the performance of ethanol was higher than that of mixed fuel. Even though the bio-ethanol from the fruit wastes is corresponded with transport ethanol standards, it thought that organic matter in bio-ethanol could be negative effect on fuel cell.

Operational Strategy for Increasing Ethanol Production in Repeated Fed-batch Ethanol Fermentation Using Saccharomyces cerevisiae (Saccharomyces cerevisiae 를 이용한 반복 유가식 ethanol 발효에서 ethanol 생산량을 증가를 위한 운전 전략)

  • Lee, Sang-Eun;Seo, Hyeon-Beom;Kwon, Min-Cheol;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • KSBB Journal
    • /
    • v.25 no.2
    • /
    • pp.187-192
    • /
    • 2010
  • We designed the optimal operational strategy in repeated fed-batch ethanol fermentation using Sacchromyces cerevisiae ATCC 24858 in views of ethanol yield, specific ethanol production rate, and ethanol productivity, when the aeration rate were controlled at 0.0 and 0.33 vvm. Coincidentally, the time intervals of withdrawal-fill of culture medium (24 and 36 h) were investigated. Ethanol yield and ethanol productivity when the aeration was carried out at 0.33 vvm were superior to those when the aeration was not carried out. Additionally, those parameters when the time interval of withdrawal-fill of culture medium was 24 h were superior to those when time interval of withdrawal-fill of culture medium was 36 h. The total ethanol production reached at the greatest value, 703.8 g-ethanol, when the aeration was carried out at 0.33 vvm and the time interval of withdrawal-fill of culture medium was 24 h. In this study, we verified experimentally the necessity of designing the operational strategy for increasing ethanol production in terms of aeration rate and time interval of withdrawal-fill of culture medium in the repeated fed-batch ethanol fermentation.

Effect of Addition of Ethanol and Organic Acids on the Quality of Mul-kimchi (Ethanol과 유기산의 첨가가 물김치의 품질에 미치는 영향)

  • 김도희;한영숙
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.13 no.4
    • /
    • pp.305-312
    • /
    • 2003
  • The effect of addition of ethanol and/or organic acid on slowing down the fermentation of Mul-kimchi was tested by measuring the changes in pH, acidity and counting the number of microorganisms in kimchi fermentation, and sensory evaluation were carried out. The addition of 0~5% ethanol to kimchi delayed the decrease of pH and the delaying effect during kimchi fermentation was dependent on the ethanol concentration used. The pH of kimchi without ethanol decreased from 5.7 to 4.13, however, the pH of the kimchi added with 5% ethanol only from 5.8 to 5.14. The increase of acidity in kimchi with 5% ethanol was only 0.5~0.6%, while that without ethanol was 0.7~0.8%. Among the organic acids tested, adipic acid was found to be most effective on the prevention of kimchi souring. The Mul-kimchi added 2% ethanol together with 0.1% organic acid showed similar effect to that of organic acid alone in the change of pH and acidity. By the sensory evaluation, Mul-kimchi with 0.1% adipic acid and 2% ethanol was selected the most desirable one except control without any addition. And the numbers of total microbes, lactic bacteria and yeast count, showed the most effective inhibition in Mul-kimchi with 0.1% adipic acid and 2% ethanol.

  • PDF

Inhibition of Ethanol Absorption by Rhodiola sachalinensis in Rats

  • Kim, Moon-Hee;Park, Chan-Koo
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.432-437
    • /
    • 1997
  • We used a herbal medicine, roots of Rhodiola sachalinensis (RS) to assess whether RS extract can decrease blood ethanol concentrations in rats fed ethanol and if so, to elucidate the mechanism by which RS extract reduces blood ethanol levels. Rats were fed ethanol orally 1 hr after the oral administration of various doses of RS extract. In another experiment, rats were injected intraperitoneally with ethanol following the intake of RS extract via gastric catheter to eliminate possible inhibition of ethanol absorption in the gastrointestine by RS extract. The administration of RS extract remarkably lowered blood ethanol levels in a dose-dependent manner in rats given ethanol orally. However, the intake of RS extract did not reduce ethanol levels in rats injected with ethanol intraperitoneally. The activities of two main hepatic enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), involved in ethanol metabolism, were not affected by the administration of RS extract in rats fed ethanol. In addition, the intake of RS extract reduced serum triglyceride levels elevated by ethanol to the normal level. We conclude that the administration of RS extract lowers blood ethanol concentrations by inhibition of ethanol absorption in the gastrointestinal tracts of ethanol-fed animals.

  • PDF

Effect of Liver Damage by Combined Administration of Ethanol and Xylene in Rats (흰쥐에게 Ethanol과 Xylene 병행 투여시 간손상에 미치는 영향)

  • Yoon, In-Sook;Lee, Hye-Ja
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.7
    • /
    • pp.259-267
    • /
    • 2010
  • To evaluate an effect of liver damage on ethanol and xylene exposure, experiments on normal male rats of the S-D strain were performed in 4 groups. The biochemical results suggest that the ethanol group had significantly higher levels of AST, ALT, LDH and also, the xylene group had notably higher levels of AST, ALT, LDH along with MMHPA than those of the control groups. The levels of AST, ALT and LDH in the ethanol+xylene group were drastically higher than those in the control, ethanol and xylene groups. But, there were significantly lower ALP levels in the xylene and ethanol+xylene groups than both the control and ethanol groups. The histological features of rat livers treated with alcohol, or xylene proved to be normal. But the rat livers treated with ethanol+xylene showed mild to moderate necrosis and inflammation as well as minimal fatty changes. The results in this experiment suggest that liver functions decreased when medicated together with xylene and ethanol rather than solely with xylene.

Effect of Arrowroot Flower (Puerariae flos) Extract on Lowering of Ethanol Concentration in Rat Blood (갈화(Puerariae flos)추출물이 Rat 혈중 Ethanol 농도에 미치는 영향)

  • Kim, Jeong-Han;Min, Sun-Sik;Kim, Sung-Hoon;Hong, Heu-Do;Kim, Jong-Soo;Kim, Soo-Un
    • Applied Biological Chemistry
    • /
    • v.38 no.6
    • /
    • pp.549-553
    • /
    • 1995
  • Ethanol concentration in blood, brain and liver of rats was shown to be effectively lowered by arrowroot flower extract. The lowering effect for ethanol concentration in blood was maximum when measured after 1 hour from ethanol feeding. Hot water extract was more effective than 80% ethanol extract. The treatment of extract at 10 min. before ethanol feeding gave a better result than that at 10 min after or 1 hour before ethanol feeding. The ethanol concentration in brain and liver was lowered as found in the blood ethanol concentration. Acetaldehyde was not detected either in blood or the tissues. The optimal amount of the Puerariae flos was 55.7 mg/kg body weight. The newly developed analytical method using dichloromethane as extracting solvent was proven to be very effective in terms of speed and simplicity.

  • PDF

NECESSITY OF READY ELECTRON DISPOSAL AND INTERSPECIES HYDROGEN TRANSFER FOR THE UTILIZATION OF ETHANOL BY RUMEN BACTERIA

  • Hino, T.;Mukunoki, H.;Imanishi, K.;Miyazaki, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.3
    • /
    • pp.511-517
    • /
    • 1992
  • Ethanol was utilized by mixed rumen microbes, but addition of pentachlorophenol (25 mg/l), a methanogen inhibitor, suppressed the utilization of ethanol. Carbon monoxide (50% of the gas phase), a hydrogenase inhibitor, more strongly suppressed the utilization of ethanol, propanol, and butanol. These results suggest that the major ethanol utilizers are $H_2$ producers. Ethanol utilization was depressed at low pH (below 6.0). Since methanogens were shown to be relatively resistant to low pH, it appears that ethanol utilizers are particularly sensitive to low pH. Ruminococcus albus and R. flavefaciens in mono-culture produced ethanol from carbohydrate (glucose and cellobiose), even when a high level (170 mM) of ethanol was present. Ethanol was not utilized even in the absence of carbohydrate, but the co-culture of these bacteria with methanogens resulted in the utilization of ethanol, i.e., when $H_2$ was rapidly converted to $CH_4$, R. albus and R. flavefaciens utilized ethanol. These results suggest that ethanol is utilized when the electrons liberated by the oxidation of ethanol are rapidly removed, and ready electron disposal in ethanol-utilizing, $H_2$-producing bacteria is accomplished by the interspecies transfer of $H_2$.

Inhibition of Vibrio parahaemolyticus by Ethanol in Tryptic Soy Broth and Some Fish Homogenates (Tryptic Soy Broth와 생선 Homogenate에 첨가한 Ethanol이 Vibrio parahaemolyticus의 증식과 생존에 미치는 영향)

  • 박찬성
    • Korean journal of food and cookery science
    • /
    • v.12 no.1
    • /
    • pp.6-12
    • /
    • 1996
  • The survival and growth of Vibrio parahaemolyticus in tryptic soy broth(TSB), flounder homogenate and oyster homogenate with 0 or 5% of ethanol was tested at -20, 5, 35, 45 and 50$^{\circ}C$. Growth pattern of V. parahaemolyticus was similar in TSB and flounder homogenate but slightly poor in oyster homogenate at 35$^{\circ}C$. Growth occured at 5% ethanol, in TSB and flounder homogenate after a prolonged lag period but decreased in oyster homogenate during incubation at 35$^{\circ}C$. TSB and fish homogenates containing 0 or 5% of ethanol were inoculated with 10$\^$6/-10$\^$7/ cells/ml of V. parahaemolyticus and cold or heat resistance of the cells were determined at -20, 5, 45 and 50$^{\circ}C$. At 5$^{\circ}C$, the viability in culture broth with 5% of ethanol or without ethanol was not vary with the culture broth. In the presence of 5% of ethanol at -20$^{\circ}C$, cells of V. parahaemolyticus in flounder homogenate and oyster homogenate were more significantly inhibited than in TSB. The D-valves for V. parahaemolyticu at 45 and 50$^{\circ}C$ was significantly lower in oyster homogenate than in TSB and flounder homogenate with 5% of ethanol or without ethanol. The D-values in each culture broth without ethanol were 1.9-3.5 times of that value in each culture broth containing 5% of ethanol at 45 and 50$^{\circ}C$.

  • PDF

Decreased Induction of Alcoholic Fatty Liver by YH430 in Rats (YH439의 알콜성 지방간생성 억제작용)

  • 강경애;김영철
    • Toxicological Research
    • /
    • v.11 no.2
    • /
    • pp.267-271
    • /
    • 1995
  • A single large dose of ethanol as well as chronic ethanol consumption produces alcoholic fatty liver in human and experimental animals. We examined the effects of YH439, a potential hepatoprotective agent, on alcoholic fatty liver generation in adult female rats. In rats treated with YH439 (250 mg/kg, po) 4 hr prior to a single dose of ethanol (6 g/kg, po), a significant decrease in hepatic triglyceride accumulation was observed. YH439 also has an inhibitory effect on hepatic triglyceride and cholesterol accumulation induced by repeated ethanol treatments for one week. Because it has been known that induction of alcoholic fatty liver is associated with lipid peroxidation and/or hepatic glutathione depression, the effect of YH439 on these parameters was determined in the livers of rats treated with ethanol. Coadministration with YH439 inhibited MDA formation and gIutathione depression induced by acute or repeated ethanol administration. In order to determine the effect of YH439 on ethanol metabolism in vivo, disappearance of ethanol from blood was measured. In rats treated with a single dose of ethanol (6 g/kg, po), the ethanol concentration in blood reached a peak approximately 120 min following the treatment which declined linearly for 18 hrs. YH439 had no effect on the decline of blood ethanol concentration regardless of the dose of ethanol given to rats. These results in this study suggest that YH439 has an inhibitory effect on fatty liver generation induced by acute or repeated ethanol consumption through a mechanism not directly related to the rate of ethanol metabolism in vivo.

  • PDF