DOI QR코드

DOI QR Code

Bioethanol Production Based on Crude Glycerol Using Enterobacter aerogenes

Enterobacter aerogenes를 이용한 crude glycerol 기반의 바이오에탄올 생산

  • Jung, Hong-Sub (Department of Chemical Engineering, Kwangwoon University) ;
  • Seong, Pil-Je (Department of Chemical Engineering, Kwangwoon University) ;
  • Go, A-Ra (Department of Chemical Engineering, Kwangwoon University) ;
  • Lee, Sang-Jun (Department of Chemical Biological Engineering, Korea University) ;
  • Kim, Seung-Wook (Department of Chemical Biological Engineering, Korea University) ;
  • Han, Sung-Ok (School of Life Science and Biotechnology, Korea University) ;
  • Cho, Jae-Hoon (Green Manufacturing Process R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Cho, Dae-Haeng (Department of Chemical Engineering, Kwangwoon University) ;
  • Kim, Yong-Hwan (Department of Chemical Engineering, Kwangwoon University) ;
  • Park, Chul-Hwan (Department of Chemical Engineering, Kwangwoon University)
  • 정홍섭 (광운대학교 화학공학과) ;
  • 성필제 (광운대학교 화학공학과) ;
  • 고아라 (광운대학교 화학공학과) ;
  • 이상준 (고려대학교 화공생명공학과) ;
  • 김승욱 (고려대학교 화공생명공학과) ;
  • 한성옥 (고려대학교 생명과학대학 생명과학부) ;
  • 조재훈 (한국생산기술연구원 그린공정연구부) ;
  • 조대행 (광운대학교 화학공학과) ;
  • 김용환 (광운대학교 화학공학과) ;
  • 박철환 (광운대학교 화학공학과)
  • Received : 2011.04.04
  • Accepted : 2011.05.16
  • Published : 2011.06.30

Abstract

The effects of pH, glycerol concentration and salt on cell growth and ethanol production using Enterobacter aerogenes KCTC 2190 were evaluated in the anaerobic culture condition. In condition of initial pH 5, cell growth and ethanol production were highest. An initial concentration of 10 g/L of pure glycerol gave the highest cell growth and ethanol production. However, in case of over 15 g/L of pure glycerol, they decreased. The cell growth and ethanol production decreased with the increase of salt concentration. When 10 g/L of crude glycerol was used as the carbon source, the cell growth and ethanol production were $1.32\;OD_{600}$ and 3.95 g/L, respectively, which were about 94.4% and 88.5% compared to those of pure glycerol. These result indicates that the crude glycerol produced in the biodiesel manufacturing process maybe useful as a potential carbon source for ethanol production form Enterobacter aerogenes KCTC 2190.

Keywords

References

  1. International Energy Agency, World Energy Outlook 2009. http://www.iea.org.(2009).
  2. Yazdani, S. S. and R. Gonzalez (2007) Anaerobic fennentation of glycerol: a path to economic viability for the biofuels industry. Curr, Opin. Biotech. 18: 213-219. https://doi.org/10.1016/j.copbio.2007.05.002
  3. Alcantara, R., J. Amores, L. Canoira, E. Fidalgo, M. J. Franco, and A. Navarro (2000) Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow. Biomass Bioenerg. 18: 515-527. https://doi.org/10.1016/S0961-9534(00)00014-3
  4. Papanikolaou, S., L. Muniglia, I. Chevalot, G. Aggelis, and I. Marc (2002) Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J. Appl. Microbiol. 92: 737-744. https://doi.org/10.1046/j.1365-2672.2002.01577.x
  5. Gonzalez-Pajuelo, M., J. C. Andrade, and I. Vasconcelos (2004) Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J. Ind. Microbiol. Biot. 31: 442-446. https://doi.org/10.1007/s10295-004-0168-z
  6. Mu, Y, H. Teng, D.-J. Zhang, W. Wang, and Z.-L. Xiu (2006) Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol biodiesel preparations. Biotechnol. Lett. 28: 1755-1759. https://doi.org/10.1007/s10529-006-9154-z
  7. WilIke, T. and K.-D. Vorlop (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. J. Appl. Microbiol. 66: 131-142.
  8. Deckwer, W.-D. (1995) Microbial conversion of glycerol to 1,3-propanediol. FEMS Microbiol. Rev. 16: 143-149.
  9. Franceschina, G., A. Zamboni, F. Bezzoa, and A. Bertucco (2008) Ethanol from corn: a technicaland economical assessment based on different scenarios. Chem. Eng. Res. Des. 86: 488-498. https://doi.org/10.1016/j.cherd.2008.01.001
  10. Seifert, C., S. Bowien, G. Gottschalk, and R. Daniel (2001) Identification and expression of the genes and purification and characterization of the gene products involved in reactivation of coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii. Eur. J. Biochem. 268: 2369-2378. https://doi.org/10.1046/j.1432-1327.2001.02123.x
  11. Nemeth, A., B. Kupcsulik, and B. Scvella (2003) 1,3-Propanediol oxidoreductase production with Klebsiella pneumoniae DSM2026. World J. Microb. Biot. 19: 659-663. https://doi.org/10.1023/A:1025116308484
  12. Biebl, H. (2001) Fermentation of glycerol by Clostridium pasteurianum-batch and continuous culture studies. J. Ind. Microbiol. Biot. 27: 18-26. https://doi.org/10.1038/sj.jim.7000155
  13. Malaoui, H. and R Marczak (2001) Separation and characterization of the 1,3-propanediol and glycerol dehydrogenase activities from Clostridium butyricum E5 wild-type and mutant D. J. Appl. Microbiol. 90: 1006-1014. https://doi.org/10.1046/j.1365-2672.2001.01335.x
  14. Barbirato, F. and A. Bories (1997) Relationship between the physiology of Enterobacter agglomerans CNCM 1210 grown anaerobically on glycerol and the culture conditions. Res. Microbiol. 148: 475-484. https://doi.org/10.1016/S0923-2508(97)88345-3
  15. Talarico, T. L., L. T. Axelsson, J. Novotny, M. Fiuzat, and W. J. Dobrogosz (1990) Utilization of glycerol as a hydrogen acceptor by Lactobacillus reuteri: purification of 1,3-propanediol: $NAD^+$ oxidoreductase. Appl. Environ. Microb. 56: 943-948.
  16. Ito, T., Y. Nakashimada, K. Senba, T. Matsui, and N. Nishio (2005) Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J. Biosci. Bioeng. 100: 260-265. https://doi.org/10.1263/jbb.100.260
  17. Fanga, Q.-H. and J .-J. Zhong (2002) Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochem. 37: 769-774. https://doi.org/10.1016/S0032-9592(01)00278-3
  18. Durre, P., H. Bahl, and G. Gottschalk (1988) Membrane processes and product formation in anaerobes. pp. 187-205. In: L. E. Erickson, and D. Y.-C. Fung (eds.). Handbook on anaerobic fermentation. Marcel Dekker, NY, USA.
  19. Zeng, A.-P., H. Biebl, and W.-D. Deckwer(1990) Effect of pH and acetic acid on growth and 2,3-butanediol production of Enterobacter aerogenes in continuous culture. Appl. Microbiol. Biotechnol. 33: 485-489.
  20. Bowles, L. K. and W. L. Ellefson (1985) Effects of Butanol on Clostridium acetobutylicum. Appl. Environ. Microb. 50: 1165-1170.
  21. Nath, K. and D. Das (2009) Etfect of light intensity and initial pH during hydrogen production by an integrated dark and photofermentation process. Int. J. Hydrogen Energ. 34: 7497-7501. https://doi.org/10.1016/j.ijhydene.2008.11.065
  22. Madigan, M. T., J. M. Martinko, P. V. Dunlap, and D. P. Clark (2009) Brock biology of microorganisms. 12th ed., pp. 167-169. Pearson Education, Pearson Benjamin Cummings, San Francisco, USA.
  23. Ginkel, S. V., S. Sung, and J. -J. Lay (2001 ) Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol. 35: 4726-4730. https://doi.org/10.1021/es001979r
  24. Fabiano, B. and P. Perago (2002) Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int. J. Hydrogen Energ. 27: 149-156. https://doi.org/10.1016/S0360-3199(01)00102-1
  25. Zheng, X. J., Y. M. Zheng, and H. Q. Yu (2005) Influence of NaCI on hydrogen production from glucose by anaerobic cultures. Environ. Technol. 26: 1073-1080. https://doi.org/10.1080/09593332608618476
  26. Das, D. and T. N. Veziroglu (2001) Hydrogen production by biological process: A survey of literature. Int. J. Hydrogen Energ. 26: 13-28. https://doi.org/10.1016/S0360-3199(00)00058-6
  27. Niel, E. W. J., P. A. M. Claassen, and A. J. M. Starns (2003) Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol. Bioenerg. 81: 255-262. https://doi.org/10.1002/bit.10463
  28. Fan, D. P. (1970) Cell wall binding properties of the Bacillus subtilis autolysin (s). J. Bacteriol. 103: 488-493.
  29. Jolliffie, L. K, R. J. Doyle,and U. N. Streips (1981) The energized membrane and cellular autolysis in Bacillus subtilis. Cell 25: 753-763. https://doi.org/10.1016/0092-8674(81)90183-5
  30. Hamana, K., H. Hamana, M. Niitsu, and K. Samejima (1996) Polyamines of thermophilic gram-positive anaerobes belonging to genera Caldicelluiosiruptor, Caioramator, Clostridium, Coprothermobactel, Moorella, Thermoanaerobacter and Thermoanaerobacterium. Microbios. 85: 213-222.