Browse > Article
http://dx.doi.org/10.7841/ksbbj.2011.26.3.223

Bioethanol Production Based on Crude Glycerol Using Enterobacter aerogenes  

Jung, Hong-Sub (Department of Chemical Engineering, Kwangwoon University)
Seong, Pil-Je (Department of Chemical Engineering, Kwangwoon University)
Go, A-Ra (Department of Chemical Engineering, Kwangwoon University)
Lee, Sang-Jun (Department of Chemical Biological Engineering, Korea University)
Kim, Seung-Wook (Department of Chemical Biological Engineering, Korea University)
Han, Sung-Ok (School of Life Science and Biotechnology, Korea University)
Cho, Jae-Hoon (Green Manufacturing Process R&D Group, Korea Institute of Industrial Technology (KITECH))
Cho, Dae-Haeng (Department of Chemical Engineering, Kwangwoon University)
Kim, Yong-Hwan (Department of Chemical Engineering, Kwangwoon University)
Park, Chul-Hwan (Department of Chemical Engineering, Kwangwoon University)
Publication Information
KSBB Journal / v.26, no.3, 2011 , pp. 223-228 More about this Journal
Abstract
The effects of pH, glycerol concentration and salt on cell growth and ethanol production using Enterobacter aerogenes KCTC 2190 were evaluated in the anaerobic culture condition. In condition of initial pH 5, cell growth and ethanol production were highest. An initial concentration of 10 g/L of pure glycerol gave the highest cell growth and ethanol production. However, in case of over 15 g/L of pure glycerol, they decreased. The cell growth and ethanol production decreased with the increase of salt concentration. When 10 g/L of crude glycerol was used as the carbon source, the cell growth and ethanol production were $1.32\;OD_{600}$ and 3.95 g/L, respectively, which were about 94.4% and 88.5% compared to those of pure glycerol. These result indicates that the crude glycerol produced in the biodiesel manufacturing process maybe useful as a potential carbon source for ethanol production form Enterobacter aerogenes KCTC 2190.
Keywords
Enterobacter aerogenes; ethanol; glycerol; crude glycerol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Madigan, M. T., J. M. Martinko, P. V. Dunlap, and D. P. Clark (2009) Brock biology of microorganisms. 12th ed., pp. 167-169. Pearson Education, Pearson Benjamin Cummings, San Francisco, USA.
2 Ginkel, S. V., S. Sung, and J. -J. Lay (2001 ) Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol. 35: 4726-4730.   DOI   ScienceOn
3 Bowles, L. K. and W. L. Ellefson (1985) Effects of Butanol on Clostridium acetobutylicum. Appl. Environ. Microb. 50: 1165-1170.
4 Talarico, T. L., L. T. Axelsson, J. Novotny, M. Fiuzat, and W. J. Dobrogosz (1990) Utilization of glycerol as a hydrogen acceptor by Lactobacillus reuteri: purification of 1,3-propanediol: $NAD^+$ oxidoreductase. Appl. Environ. Microb. 56: 943-948.
5 International Energy Agency, World Energy Outlook 2009. http://www.iea.org.(2009).
6 Nath, K. and D. Das (2009) Etfect of light intensity and initial pH during hydrogen production by an integrated dark and photofermentation process. Int. J. Hydrogen Energ. 34: 7497-7501.   DOI   ScienceOn
7 Durre, P., H. Bahl, and G. Gottschalk (1988) Membrane processes and product formation in anaerobes. pp. 187-205. In: L. E. Erickson, and D. Y.-C. Fung (eds.). Handbook on anaerobic fermentation. Marcel Dekker, NY, USA.
8 Zeng, A.-P., H. Biebl, and W.-D. Deckwer(1990) Effect of pH and acetic acid on growth and 2,3-butanediol production of Enterobacter aerogenes in continuous culture. Appl. Microbiol. Biotechnol. 33: 485-489.
9 Ito, T., Y. Nakashimada, K. Senba, T. Matsui, and N. Nishio (2005) Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J. Biosci. Bioeng. 100: 260-265.   DOI   ScienceOn
10 Fanga, Q.-H. and J .-J. Zhong (2002) Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochem. 37: 769-774.   DOI   ScienceOn
11 Malaoui, H. and R Marczak (2001) Separation and characterization of the 1,3-propanediol and glycerol dehydrogenase activities from Clostridium butyricum E5 wild-type and mutant D. J. Appl. Microbiol. 90: 1006-1014.   DOI   ScienceOn
12 Fan, D. P. (1970) Cell wall binding properties of the Bacillus subtilis autolysin (s). J. Bacteriol. 103: 488-493.
13 Barbirato, F. and A. Bories (1997) Relationship between the physiology of Enterobacter agglomerans CNCM 1210 grown anaerobically on glycerol and the culture conditions. Res. Microbiol. 148: 475-484.   DOI   ScienceOn
14 Nemeth, A., B. Kupcsulik, and B. Scvella (2003) 1,3-Propanediol oxidoreductase production with Klebsiella pneumoniae DSM2026. World J. Microb. Biot. 19: 659-663.   DOI   ScienceOn
15 Biebl, H. (2001) Fermentation of glycerol by Clostridium pasteurianum-batch and continuous culture studies. J. Ind. Microbiol. Biot. 27: 18-26.   DOI   ScienceOn
16 Seifert, C., S. Bowien, G. Gottschalk, and R. Daniel (2001) Identification and expression of the genes and purification and characterization of the gene products involved in reactivation of coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii. Eur. J. Biochem. 268: 2369-2378.   DOI   ScienceOn
17 Franceschina, G., A. Zamboni, F. Bezzoa, and A. Bertucco (2008) Ethanol from corn: a technicaland economical assessment based on different scenarios. Chem. Eng. Res. Des. 86: 488-498.   DOI   ScienceOn
18 Hamana, K., H. Hamana, M. Niitsu, and K. Samejima (1996) Polyamines of thermophilic gram-positive anaerobes belonging to genera Caldicelluiosiruptor, Caioramator, Clostridium, Coprothermobactel, Moorella, Thermoanaerobacter and Thermoanaerobacterium. Microbios. 85: 213-222.
19 WilIke, T. and K.-D. Vorlop (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. J. Appl. Microbiol. 66: 131-142.
20 Deckwer, W.-D. (1995) Microbial conversion of glycerol to 1,3-propanediol. FEMS Microbiol. Rev. 16: 143-149.
21 Yazdani, S. S. and R. Gonzalez (2007) Anaerobic fennentation of glycerol: a path to economic viability for the biofuels industry. Curr, Opin. Biotech. 18: 213-219.   DOI   ScienceOn
22 Mu, Y, H. Teng, D.-J. Zhang, W. Wang, and Z.-L. Xiu (2006) Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol biodiesel preparations. Biotechnol. Lett. 28: 1755-1759.   DOI   ScienceOn
23 Jolliffie, L. K, R. J. Doyle,and U. N. Streips (1981) The energized membrane and cellular autolysis in Bacillus subtilis. Cell 25: 753-763.   DOI   ScienceOn
24 Niel, E. W. J., P. A. M. Claassen, and A. J. M. Starns (2003) Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol. Bioenerg. 81: 255-262.   DOI   ScienceOn
25 Fabiano, B. and P. Perago (2002) Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int. J. Hydrogen Energ. 27: 149-156.   DOI   ScienceOn
26 Gonzalez-Pajuelo, M., J. C. Andrade, and I. Vasconcelos (2004) Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J. Ind. Microbiol. Biot. 31: 442-446.   DOI   ScienceOn
27 Alcantara, R., J. Amores, L. Canoira, E. Fidalgo, M. J. Franco, and A. Navarro (2000) Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow. Biomass Bioenerg. 18: 515-527.   DOI   ScienceOn
28 Zheng, X. J., Y. M. Zheng, and H. Q. Yu (2005) Influence of NaCI on hydrogen production from glucose by anaerobic cultures. Environ. Technol. 26: 1073-1080.   DOI   ScienceOn
29 Das, D. and T. N. Veziroglu (2001) Hydrogen production by biological process: A survey of literature. Int. J. Hydrogen Energ. 26: 13-28.   DOI   ScienceOn
30 Papanikolaou, S., L. Muniglia, I. Chevalot, G. Aggelis, and I. Marc (2002) Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J. Appl. Microbiol. 92: 737-744.   DOI   ScienceOn