DOI QR코드

DOI QR Code

비정렬격자계와 체적포착법을 사용한 표면장력이 지배적인 다상유동 수치해석

Numerical Simulation of Surface Tension-Dominant Multiphase Flows by Using Volume-Capturing Method and Unstructured Grid System

  • 명현국 (국민대학교 기계시스템공학부)
  • 투고 : 2011.03.07
  • 심사 : 2011.05.02
  • 발행 : 2011.07.01

초록

본 연구에서는 비정렬격자계와 체적포착법을 사용하여 표면장력이 지배적인 다상유동의 수치해석 방법을 제시하였다. 먼저 표면장력에 대한 CSF(Continuum Surface Force) 모델을 비정렬격자계에 적용할 수 있도록 수치해석 방법을 확립시켜 Myong(2009)이 개발한 비정렬격자계와 체적포착법을 사용한 수치 해석코드에 삽입하였다. 테스트 문제로 오직 표면장력만이 존재하는 평형상태의 정적(static) 액적 및 비평형상태의 동적(dynamic) 액적 문제에 적용하여, 이 해석방법의 유용성과 정확도를 평가하였다. 연구결과, 매끄러운 곡률 계산을 위해 필요한 필터로 본 연구에서 제안한 Laplacian 필터와 함께 CSF 모델로는 밀도보정(density-scaled)한 CSF 모델이 예측성능이 우수한 것으로 나타났다. 또한 표면장력 계산을 위한 이 모델을 채용한 본 수치해석방법은 표면장력이 지배적인 다상유동인 평형상태의 정적 액적 및 비평형상태의 동적 액적 문제 모두에 대해 정확성과 유용성이 입증되었다.

A numerical method of the CSF(Continuum Surface Force) model is presented for the calculation of the surface tension force and implemented in an in-house solution code(PowerCFD). The present method(code) employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with volume capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The application of the present method to a 2-D liquid drop problem is illustrated by an equilibrium and nonequilibrium oscillating drop calculation. It is found that the present method simulates efficiently and accurately surface tension-dominant multiphase flows.

키워드

참고문헌

  1. Hirt, C. W. and Nicholls, B. D., 1981, "Volume of Fluid(VOF) Method for the Dynamics of Free Boundaries," J. Comput. Phys., Vol. 39, pp. 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  2. Rider, W. J. and Kothe, D. B., 1998, "Reconstruction Volume Tracking," J. Comput. Phys., Vol. 141, pp. 112-152. https://doi.org/10.1006/jcph.1998.5906
  3. Puckett, E. G., Almgren, A. S., Bell, J. B., Marcus, D. L. and Rider, W. J., 1997, "A High-Order Projection Method for Tracking Fluid Interfaces in Variable Density Incompressible Flows," J. Comput. Phys., Vol. 130, pp. 269-282. https://doi.org/10.1006/jcph.1996.5590
  4. Muzaferija, S. and Peric, M., 1999, "Computation of Free Surface Flows using Interface Tracking and Interface Capturing Methods," Chap. 2, in Mahrenholtz, O. and Markewicz, M., Nonlinear Water Wave Interaction, Comput. Mech. Publications.
  5. Ubbink, O., 1997, "Numerical Prediction of Two Fluid Systems with Sharp Interface," PhD Thesis, University of London.
  6. Zhao, Y., Tan, H. H. and Zhang, B., 2002, "A High-Resolution Characteristics-based Implicit Dual Time-Stepping VOF Method for Free Surface Flow Simulation on Unstructured Grids," J. Comput. Phys., Vol. 183, pp. 233-273. https://doi.org/10.1006/jcph.2002.7196
  7. Blackbill, J. U., Kothe, C. and Zamach, C., 1992, "A Continuum Method for Modeling Surface Tension," J. Comput. Phys., Vol. 100, pp. 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
  8. Lafaurie, B., Nardone, R., Scardovelli, S., Zaleski, G. and Zanetti, G., 1994, "Modeling Merging and Fragmentation in Multiphase Flows with SURFER," J. Comput. Phys., Vol. 113, pp. 134-147. https://doi.org/10.1006/jcph.1994.1123
  9. Francois, M. M., Cummins, S. J., Dendy, E. D., Kothe, D. B., Sicilian, J. M. and Williams, M. W., 2006, "A Balanced-Force Algorithm for Continuous and Sharp Interfacial Surface Tension Models within a Volume Tracking Framework," J. Comput. Phys., Vol. 213, pp. 141-173. https://doi.org/10.1016/j.jcp.2005.08.004
  10. Tong, A. Y. and Wang, Z., 2007, "A Numerical Method for Capilarity-Dominant Free Surface Flows," J. Comput. Phys., Vol. 221, pp. 506-523. https://doi.org/10.1016/j.jcp.2006.06.034
  11. Seifollahi, M., Shirani, E. and Ashgriz, N., 2008, "An Improved Method for Calculation of Interface Pressure Force in PLIC-VOF Methods," European J. of Mechanics B/Fluids, Vol. 27, pp. 1-23. https://doi.org/10.1016/j.euromechflu.2007.01.002
  12. Gerlach, D., Tomar, G., Biswas, G. and Durst, F., 2006, "Comparison of Volume-of-Fluid Methods for Surface Tension-Dominant Two-Phase Flows," Int. J. of Jeat and Mass Transfer, Vol. 49, pp. 740-754. https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.045
  13. Myong, H. K. and Kim, J. E., 2006, "A Study on an Interface Capturing Method Applicable to Unstructured Meshes for the Analysis of Free Surface Flow," KSCFE J. of Computational Fluids Engineering, Vol. 11, No. 4, pp.14-19.
  14. Myong, H. K., 2009, "Numerical Simulation of Multiphase Flows with Material Interface due to Density Difference by Interface Capturing Method," Trans. of the KSME(B), Vol. 33, No. 6, pp. 443-453. https://doi.org/10.3795/KSME-B.2009.33.6.443
  15. Myong, H. K., 2008, "Comparative Study on High Resolution Schemes in Interface Capturing Method Suitable for Unstructured Meshes," Trans. of the KSME(B), Vol. 32, No. 1, pp. 23-29. https://doi.org/10.3795/KSME-B.2008.32.1.023
  16. Myong, H. K. and Kim, J., 2005, "Development of 3D Flow Analysis Code using Unstructured Grid System(1st Report, Numerical Method)," Trans. of the KSME(B), Vol. 29, No. 9, pp. 1049-1056.
  17. Myong, H. K. and Kim,. J., 2006, "Development of a Flow Analysis Code using an Unstructured Grid with the Cell-Centered Method," J. of Mechanical Science and Technology (KSME Int. J.), Vol. 20, No. 12, pp. 2218-2229. https://doi.org/10.1007/BF02916339

피인용 문헌

  1. A New Concept to Transport a Droplet on Horizontal Hydrophilic/Hydrophobic Surfaces vol.38, pp.3, 2014, https://doi.org/10.3795/KSME-B.2014.38.3.263
  2. Droplet Transport Mechanism on Horizontal Hydrophilic/Hydrophobic Surfaces vol.38, pp.6, 2014, https://doi.org/10.3795/KSME-B.2014.38.6.513