• Title/Summary/Keyword: 비정렬격자계

Search Result 83, Processing Time 0.019 seconds

Numerical Simulation of Surface Tension-Dominant Multiphase Flows by Using Volume-Capturing Method and Unstructured Grid System (비정렬격자계와 체적포착법을 사용한 표면장력이 지배적인 다상유동 수치해석)

  • Myong, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.723-733
    • /
    • 2011
  • A numerical method of the CSF(Continuum Surface Force) model is presented for the calculation of the surface tension force and implemented in an in-house solution code(PowerCFD). The present method(code) employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with volume capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The application of the present method to a 2-D liquid drop problem is illustrated by an equilibrium and nonequilibrium oscillating drop calculation. It is found that the present method simulates efficiently and accurately surface tension-dominant multiphase flows.

CONSERVATIVE OVERSET MESH TECHNIQUE ON 2-D UNSTRUCTURED MESHES (이차원 비정렬 격자계에서의 보존적 중첩 격자 기법)

  • Jung, M.S.;Kwon, O.J.;Kang, H.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.27-32
    • /
    • 2008
  • In the present study, a conservative overset mesh technique has been developed on 2-D unstructured meshes. A new domain connection technique between independent mesh blocks was proposed to satisfy the conservation of mass, momentum, or energy in entire computational domain. The present technique was applied to several classical computational problems to validate the superiority of the conservative method to the non-conservative method.

  • PDF

CONSERVATIVE OVERSET MESH TECHNIQUE ON 2-D UNSTRUCTURED MESHES (이차원 비정렬 격자계에서의 보존적 중첩 격자 기법)

  • Jung, M.S.;Kwon, O.J.;Kang, H.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.27-32
    • /
    • 2008
  • In the present study, a conservative overset mesh technique has been developed on 2-D unstructured meshes. A new domain connection technique between independent mesh blocks was proposed to satisfy the conservation of mass, momentum, or energy in entire computational domain. The present technique was applied to several classical computational problems to validate the superiority of the conservative method to the non-conservative method.

  • PDF

An Unstructured 3-D Chimera Technique for Overlapped Bodies inRelative Motion (3차원 비정렬 중첩격자계를 이용한 서로 겹쳐진 물체들 간의 상대운동 해석기법에 관한 연구)

  • 안상준;권오준;정문승
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.1-7
    • /
    • 2006
  • In the present study, A 3-D chimera technique for overlapped bodies in relative motion is studied using unstructured meshes. If all node points of a mesh element at solid boundary are in another body, this element is excluded from computational domain. For computation of unsteady flow, non-active cells have proper variables using interpolation and extrapolation. These variables are used in next time step. The motion of a launching trajectory ejected from a wing and the motion of deploying fins of a trajectory which have not been simulated are computed to conform practicality of this technique.

Development of a 3-D Viscous Flow Solver Based on Unstructured Hybrid Meshes (비정렬 혼합 격자계 기반의 삼차원 점성 유동해석코드 개발)

  • Jung, Mun-Seung;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.677-684
    • /
    • 2007
  • In the Present Study, a 3-D viscous flow solver, based on unstructured hybrid meshses containing tetrahedra, prisms and pyramids, has been developed. A finite-volume discretization scheme is used for solving the compressible Navier-Stokes equations. A cell-vertex median dual volume is used for spatial discretization. The one-equation Spalart-Allmaras turbulence model has been adopted to evaluate the eddy viscosity. Validation were made by computing laminar and turbulent flows around a 3-D wing for steady flows and turbulent flows around an oscillating 3-D wing in harmonic motion for unsteady flows.

Convergence and Stability Analysis of LU Scheme on Unstructured Meshes: Part I - Euler Equations (비정렬 격자계에서 LU Implicit Scheme의 수렴성 및 안정성 해석 : Part I-오일러 방정식)

  • Kim, Joo-Sung;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.1-11
    • /
    • 2004
  • A comprehensive study has been made for the investigation of the convergence and stability characteristics of the LU scheme for solving the Euler equations on unstructured meshes. The von Neumann stability analysis technique was initially applied to a scalar model equation, and then the analysis was extended to the Euler equations. The results indicated that the convergence rate is governed by a specific combination of flow parameters. Based on this insight, it was shown that the LU scheme does not suffer any convergence deterioration at all grid aspect ratios, as long as the local time step is defined using an appropriate parameter combination.

Development of an Unstructured 2-D Chimera Technique for Overlapped Bodies in Relative Motion (2차원 비정렬 중첩격자계를 이용한 서로 겹쳐진 물체간의 상대운동 해석기법 개발)

  • An, Sang-Jun;Gwon, O-Jun;Jeong, Mun-Seung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.17-25
    • /
    • 2006
  • In the present study, a 2-D chimera technique for overlapped bodies in relative motion is developed using unstructured triangular meshes. The solid boundary nodes located next to the intersecting point between bodies are merged to the intersecting point to assure accurate representation of the intersecting region. In order to assign proper value of flow variables at the nodes located out of the computational field, interpolation is conducted for non-active nodes. For validation, the motions of a NACA64A006 airfoil and a NACA0012 airfoil with a plane flap are computed and the results are compared with other simulations. The motion of a launching missile ejected from a NACA0012 airfoil is also simulated.

Convergence and Stability Analysis of LU Scheme on Unstructured Meshes: Part II - Navier-Stokes Equations (비정렬 격자계에서 LU implicit scheme의 수렴성 및 안정성 해석: Part II - Navier-Stokes 방정식)

  • Kim, Joo-Sung;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.1-11
    • /
    • 2004
  • A comprehensive study has been made for the investigation of the convergence and stability characteristics of the LU scheme for solving the Navier-Stokes equations on unstructured meshes. For this purpose the characteristics of the LU scheme was initially studied for a scalar model equation. Then the analysis was extended to the Navier-Stokes equations. It was shown that the LU scheme has an inherent stiffness in the streamwise direction. This stiffness increases when the grid aspect ratio becomes high and the cell Reynolds number becomes small. It was also shown that the stiffness related to the grid aspect ratio can be effectively eliminated by performing proper subiteration. The results were validated for a flat-plate turbulent flow.

Inverse Radiation Analysis of a Two-Dimensional Irregular Geometry Using Unstructured Triangular Meshes (비정렬 삼각 격자를 이용한 2 차원 비직교 형상에서의 역복사 해석)

  • Yi, Kyung-Joo;Baek, Seung-Wook;Kim, Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.561-567
    • /
    • 2011
  • The inverse radiation analysis of a two-dimensional irregular configuration using unstructured triangular meshes is presented. In this study, an enclosure filled with an absorbing, emitting and scattering medium with diffusely emitting and reflecting opaque boundaries is considered. The finite volume method is applied to solve the radiative transfer equation in order to simulate the measured incident radiation values which are used as input data for the inverse analysis. The conjugate gradient method is adopted for the estimation of wall emissivities by minimizing the objective function at each iteration step. To verify the performance of the unstructured grid system, we compare the results with those using a structured grid system for the two-dimensional lopsided shape. The effect of measurement errors on the estimation accuracy is also investigated.

NUMERICAL SIMULATION OF UNSTEADY VISCOUS FLOWS USING A GRID DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES (비정렬 혼합 격자계에서 격자 변형 기법을 이용한 비정상 점성 유동 수치 모사)

  • Lee, H.D.;Jung, M.S.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.252-268
    • /
    • 2009
  • In the present study, a grid deformation technique has been incorporated into the unsteady compressible and incompressible viscous flow solvers on unstructured hybrid meshes. An algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements, and a ball-vertex spring analogy was adopted for inviscid elements among several spring analogy methods due to its robustness. The present method was validated by comparing the results obtained from the grid deformation and the rigid motion of entire grids. Fish swimming motion of an NACA0012 airfoil and flapping wing motion of a generic fighter were simulated to demonstrate the robustness of the present grid deformation technique.

  • PDF