DOI QR코드

DOI QR Code

탄소강 배관 티에서 편향 난류유동에 따른 속도성분과 국부감육의 상관관계

Relationship Between Local Wall Thinning and Velocity Components of Deflected Turbulent Flow Inside the Tee Sections of Carbon Steel Piping

  • 투고 : 2011.03.03
  • 심사 : 2011.04.18
  • 발행 : 2011.07.01

초록

본 연구의 목적은 국부감육이 일어나고 있는 위치들을 분석하고, 그와 관련된 난류매개변수를 밝혀내는데 있다. 축소 제작된 배관계 티부분에서의 실험과 수치해석이 이루어졌으며, 실제로 배관계 부품내에서의 유동특성을 유추하기 위하여 그 결과들이 비교 검토되었다. 국부감육율과 난류 매개변수간의 상관관계를 결정하기 위하여 급수가열기 주 배관에서의 티 부품에 대한 수치해석이 수행되었고, 실제적인 국부감육 발생 위치를 찾아내기 위해 알칼리 금속염을 사용하여 감육 유로가시화 실험을 수행하였으며, 이를 기초로 한 난류매개 변수와 국부감육의 두께가 비교 분석되었다. 이러한 결과 값 비교를 통하여 얻어낸 바로는 기하학적 형태에 기인하는 배관 벽면에서의 박리로 인한 반경 방향 유속 Vr이 국부 감육 현상과 가장 연관성이 높은 것으로 나타났다.

The aim of this study is to identify the locations at which local wall thinning occurs and to determine the turbulence coefficients related to local wall thinning. Experiments and numerical analyses of the tee sections of different down-scaled piping components were performed and the results were compared. Numerical analyses of full-scale models of actual plants were performed in order to simulate the flow behaviors inside the piping components. In order to determine the relationship between the turbulence coefficients and the rate of local wall thinning, numerical analyses of the tee components in the main feedwater systems were performed. The turbulence coefficients obtained from the numerical analyses were compared with the local wear rate obtained from the measurement data. From the comparison of the results, the vertical flow velocity component (Vr) flowing to the wall after separating in the wall due to the geometrical configuration and colliding with the wall directly at an angle of some degree was analogous to the configuration of local wall thinning.

키워드

참고문헌

  1. NRC, 1987, "Thinning of Pipe Walls in Nuclear Power Plants," Bulletin 87-01.
  2. NRC, 1988, "Feedwater Line Break, Supplement 3," Notice 86-106.
  3. KINS, 2004, "Nuclear Power Plant Accident Breakdown Investigation (The second) - Japan Mihama 3 Feedwater Pipe Rupture Accident," Int., 2004-1 (040809F-r2).
  4. Kasrner, Von W. and Riedle, K., 1986, "Empirisches Modell zur Berechnung von Materialabtragen Durch Erosionskorrosion," VGB Kraftwerkstechnik, Vol. 66, pp. 1171-1178.
  5. Kastner, W., Riedle, K. K. and Tratz, H., 1984, "Experimental Inspections on Material Loss due to Erosion-Corrosion," VGB Kraftwerkstechnik, Vol. 64, No. 5, pp. 411-423.
  6. Keller, H., 1978, "Corrosion and Erosion Problems in Saturated-Steam Turbines," AIM Conf., Liege, Belgium, pp. 22-28.
  7. Choudhury, D., 1993, "Introduction to the Renormalization Group Method and Turbulence Modeling," Fluent Inc., Technical Memorandum TM-107.
  8. Fluent Inc, 2008, Fluent 6.x Trainning Notes, pp.1-1-1-56.
  9. Delp, G. A., Robison, J. D. and Sedlack, M. T., 2004, "Erosion/Corrosion in Nuclear Plant Steam Piping : Cause and Inspection Program Guide Line," EPRI NP-3944.
  10. Hwang, K. M., Jin, T. E. and Kim, K. H., 2009, "Identification of Relationship Between Local Velocity Components and Local Wall Thinning Inside Carbon Steel Pipe," J. of Nuclear Science and Technology, Vol.46, No.5, pp.469-478 https://doi.org/10.3327/jnst.46.469