Effect of NaCl Stress on the Growth, Antioxidant Materials, and Inorganic Ion Content in Head Lettuce Seedlings

양상추 유묘의 생육, 항산화물질 및 무기이온의 함량에 미치는 NaCl 스트레스의 영향

  • Kim, Ju-Sung (Majors in Plant Resource Sciences and Environment, Jeju National University) ;
  • Hyun, Tae-Kyung (Division of Applied Life Science, Gyeongsang National University)
  • 김주성 (제주대학교 식물자원환경전공) ;
  • 현태경 (경상대학교 응용생명과학부)
  • Received : 2011.04.04
  • Accepted : 2011.09.04
  • Published : 2011.10.31

Abstract

In head lettuce seedlings, NaCl stress was treated with hydroponic culture containing 0, 50, or with 100 mM NaCl in the seedling grown up to two leaf stages. Our focus was on the effect of NaCl on fresh and dry weights, antioxidant materials, and inorganic ion level. Fresh and dry weights of head lettuce seedlings increased with the increase in salinity while the optimal growth occured at 50 mM NaCl. The chlorophyll a (Chl a), total Chl and Chl a/b ratio increased 6 days after treatment with 100 mM NaCI. However, the Chl b content decreased. Total glutathione increased only in the root of head lettuce seedlings, whereas significant increase of total arcorbate content was observed in both shoot and root after the treatment with 100 mM NaCl. In addition, the NaCl treatment resulted in the decreased level of spermidine content, and a increased spermine content. Furthermore, $Na^+$ content in shoot and root increased significantly while $K^+$, $Ca^{2+}$, and $Mg^{2+}$ content decreased. The alteration of inorganic ion level after treatment with NaCl caused the reduction of $K^+/Na^+$, $Ca^{2+}/Na^+$, and $Mg^{2+}/Na^+$ ratio with the increase of NaCl concentration. Taken together, these findings indicate that the treatment of NaCl causes the induction of oxidative stress, and results in the alteration of metabolic mechanism in head lettuce seedlings.

본 실험은 수경재배 방식으로 본엽 2매까지 키운 양상추를 이용하여 NaCl 스트레스(0, 50 및 100mM NaCl)에 의한 생체중과 건물중, 항산화 물질 및 무기이온 함량 의 변화를 조사하였다. 양상추 유묘의 생체중 및 건물중은 NaCl의 농도 증가에 따라 증가하였으며, 50mM NaCl 처리시 가장 높았다. Chl a, total Chl 함량과 Chl a/b는 100mM NaCI 처리 후 6일째 증가하였으나, Chl b 함량은 감소하였다. 100mM NaCl 처리 후, 총글루타치온 함량은 양상추 유묘의 뿌리에서 증가하였으나, 총아스코르빈산은 뿌리와 줄기에서 모두 증가하였다. 또한, NaCl 스트레스에 의한 spermidine 감소 현상과 spermine 증가현상을 나타내었다. 게다가, 뿌리 및 줄기에서 $Na^+$ 함량이 증가함에 따라 $K^+$, $Ca^{2+}$$Mg^{2+}$ 함량은 감소하였으며 $K^+/Na^+$, $Ca^{2+}/Na^+$$Mg^{2+}/Na^+$ ratio 역시 감소하였다. 종합해보면, 이들 결과는 양상추 유묘에서 NaCl 처리에 의해 산화 스트레스가 유도되고, 그 결과 산화 스트레스에 대응하기 위한 대사과정의 변화로 판단된다.

Keywords

References

  1. Allakhverdiev, S.I., A. Sakamoto, Y. Nishiyama, M. Inada, and N. Murata. 2000. Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol. 123:1047-1056. https://doi.org/10.1104/pp.123.3.1047
  2. Ashraf, M. and A. Orooj. 2006. Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zone traditional medicinal plant ajwain (Trachyspermum ammi L. Sprague). J. Arid. Environ. 64:209-220. https://doi.org/10.1016/j.jaridenv.2005.04.015
  3. Bolu, W.H. and A. Polle. 2004. Growth and stress reactions in roots and shoots of a salt-sensitive poplar species (Populus ${\times}$ canescens). Trop. Ecol. 45:161-171.
  4. Bowler, C., M. van Montagu, and D. Inze. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Mol. Biol. 43:83-116. https://doi.org/10.1146/annurev.pp.43.060192.000503
  5. Bruggemann, L.I., I.I. Pottosin, and G. Schonknecht. 1998. Cytoplasmic polyamines block the fast activating vacuolar cation channel. Plant J. 16:101-105. https://doi.org/10.1046/j.1365-313x.1998.00274.x
  6. Cha, H.S., A.R. Youn, S.H. Kim, K.H. Kwon, and B.S. Kim. 2007. Evaluation of quality and analysis of hazard management at different seasons of lettuce. J. Kor. Soc. Food Sci. Nutr. 36:932-937. https://doi.org/10.3746/jkfn.2007.36.7.932
  7. Chappele, E.W., M.S. Kim, and J.E. McMurtrey. 1992. Ratio analysis of reflectance spectra (RARS): An algorithm for remote estimation of the concentration of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Sens. Environ. 39:239-247. https://doi.org/10.1016/0034-4257(92)90089-3
  8. Cheong, M.S. and D.J. Yun. 2007. Salt-stress signaling. J. Plant Biol. 50:148-155. https://doi.org/10.1007/BF03030623
  9. Choi, Y.J., D.C. Won, and H.D. Chung. 2003. Effects of soil EC on emergence rate, seedling growth, and physiological disorders of leafty and root vegetable crops, and diminishing effect of soil EC level by washing with water or manure adding. J. Kor. Soc. Hort. Sci. 44:575-581.
  10. De Araujo, S.A.M., J.A.G. Silveira, T.D. Almeida, I.M.A. Rocha, D.L. Morais, and R.A. Viegas. 2006. Salinity tolerance of halophyte Atriplex nummularia L. grown under increasing NaCl levels. R. Bras. Eng. Agríc. Ambiental 10:848-854. https://doi.org/10.1590/S1415-43662006000400010
  11. Efrose, R.C., E. Flemetakis, L. Sfichi, C. Stedel, E.D. Kouri, M.K. Udvardi, K. Kotzabasis, and P. Katinakis. 2008. Charaterization of spermidine and spermine synthases in Lotus japonicas: Induction and spatial organization of polyamine biosynthesis in nitrogen fixing nodules. Planta 228:37-49. https://doi.org/10.1007/s00425-008-0717-1
  12. Foyer, C.H., P. Descourvieres, and K.J. Kunert. 1994. Protection against oxygen radicals: important defense mechanism studied in transgenic plants. Plant Cell Environ. 17:507-523. https://doi.org/10.1111/j.1365-3040.1994.tb00146.x
  13. Gronwald, J.W., E.P. Fuerst, C.V. Eberlein, and M.A. Egli. 1987. Effect of herbicide antidotes on glutathione concentration and glutathione S-transferase activity of sorghum shoots. Pestic. Biochem. Physiol. 29:66-76. https://doi.org/10.1016/0048-3575(87)90085-X
  14. Heo, E.J., H.H. Jung, and K.S. Kim. 2007. Response of Dianthus japonicus Thunb. to NaCl stress imposed at different growth stages. Hort. Environ. Biotechnol. 48:381-386.
  15. Jamil, M., S. Rehman, and E.S. Rha. 2007. Salinity effect on plant growth, PSII photochemistry and chlorophyll content in sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea capitata L.). Pak. J. Bot. 39:753-760.
  16. Jamil, M., S. Rehman, K.J. Lee, J.M. Kim, H.S. Kim, and E.S. Rha. 2007. Salinity reduced growth PS2 photochemistry and chlorophyll content in radish. Sci. Agric. 64:111-118. https://doi.org/10.1590/S0103-90162007000200002
  17. Jeschke, W.D., J.S. Pate, and C.A. Atkins. 1987. Partitioning of $K^{+}$, $Na^{+}$, $Mg^{2+}$, and $Ca^{2+}$ through xylem and phloem component organs and nodulated white lupin under mild salinity. J. Plant Physiol. 128:77-93. https://doi.org/10.1016/S0176-1617(87)80183-9
  18. Kasugai, S. 1939. Studies on the hydroponic cultures. J. Sci. Soil Manure 13:669-822.
  19. Katsuhara, M., K. Kuchitsu, K. Takeshige, and M. Tazawa. 1989. Salt stress-induced cytoplasmic acidification and vacuolar alkalinization in Nitellopsis obtuse cells. Plant Physiol. 90:1102-1107. https://doi.org/10.1104/pp.90.3.1102
  20. Kim, B.S., D.C. Shin, S.E. Lee, G.B. Nahm, and J.W. Jeong. 1995. Freshness prolongat of crisphead lettuce by vacuum cooling and cold-chain system. Kor. J. Food Sci. Technol. 27:546-554.
  21. Kim, J.S., I.S. Shim, and M.J. Kim. 2010. Physiological response of Chinese cabbage to salt stress. Kor. J. Hort. Sci. Technol. 28:343-352.
  22. Kim, Y.H., I.S. Shim, K. Kobayashi, and K. Usui. 1999. Relationship between Na content or K/Na ratio in shoots and salt tolerance in several gramineous plants. J. Weed Sci. Tech. 44:293-299. https://doi.org/10.3719/weed.44.293
  23. Krishnamurthy, R. and K.A. Bhagwat. 1989. Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiol. 91:500-504. https://doi.org/10.1104/pp.91.2.500
  24. Lacerda, C.F., J. Cambraia, M.A. Cano, and H.A. Ruiz. 2001. Plant growth and solute accumulation and distribution in two sorghum genotypes, under NaCl stress. Rev. Bras. Fisiol. Veg. 13:270-284. https://doi.org/10.1590/S0103-31312001000300003
  25. Lacerda, C.F., J. Cambraia, M.A. Cano, H.A. Ruiz, and J.T. Prisco. 2003. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environ. Exp. Bot. 49:107-120. https://doi.org/10.1016/S0098-8472(02)00064-3
  26. Lee, H.J. and S.E. Oh. 1994. Interrelationship between environmental stresses, reactive oxygen species and stress-ethylene. Kor. J. Ecol. 17:91-100.
  27. Maiale, S., D.H. Sanchez, A. Guirado, A. Vidal, and O.A. Ruiz. 2004. Spermine accumulation under salt stress. J. Plant Physiol. 161:35-42. https://doi.org/10.1078/0176-1617-01167
  28. Musyimi, D.M., G.W. Netondo, and G. Ouma. 2007. Effects of salinity on gas exchange and nutrients uptake in avocados. J. Biol. Sci. 7:496-505. https://doi.org/10.3923/jbs.2007.496.505
  29. Parida, A.K. and A.B. Das. 2005. Salt tolerance and salinity effects on plants. Ecotoxicol. Environ. Saf. 60:324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  30. Peter, R., V. Wim, D. Frank, and D. Johan. 2004. Consumer perception and choice of minimally processed vegetable and packaged fruit. Food Qual. Prefer. 15:259-270. https://doi.org/10.1016/S0950-3293(03)00066-1
  31. Rhee, H.C., K.H. Kang, K.B. Kweon, Y.H. Choi, and H.T. Kim. 2002. Effect of NaCl stress on the growth, photosynthetic rate and mineral uptake of tomato, red pepper, and egg plant in pot culture. J. Bio-Environment Control 11:133-138.
  32. Sanchez, D.H., J.C. Cuevas, M.A. Chiesa, and O.A. Ruiz. 2005. Free spermidine and spermine content in Lotus glaber under long-term salt stress. Plant Sci. 168:541-546. https://doi.org/10.1016/j.plantsci.2004.09.025
  33. Santa-Cruz, A., M. Acosta, F. Perez-Alfocea, and M.C. Bolarin. 1997. Changes in free polyamine levels induced by salt stress in leaves of cultivated and wild tomato species. Physiol. Plant 101:341-346. https://doi.org/10.1111/j.1399-3054.1997.tb01006.x
  34. Savoure, A., D. Thorin, M. Davey, X.J. Hua, S. Mauro, M. Van Montagu, D. Inze, and N. Verbruggen. 1999. NaCl and $CuZnSO_{4}$ treatments trigger distinct oxidative defense mechanism in Nicotiana plumbaginifolia L. Plant Cell Environ. 22:387-396. https://doi.org/10.1046/j.1365-3040.1999.00404.x
  35. Simon-Sarkadi, L., G. Kocsy, and Z. Sebestyen. 2002. Effect of salt stress on free amino acid and polyamine content in cereals. Acta Biol. Szeg. 46:73-75.
  36. Singh, A. and R. Prasad. 2009. Salt stress effects growth and cell wall bound enzymes in Arachis hypogaea L. seedings. Int. J. Integr. Biol. 7:117-123.
  37. Singh, A.K. and R.S. Dubey. 1995. Changes in chlophyll a and b contents and activites of photosystems 1 and 2 in rice seediness incuced by NaCl. Photosynthetica 31:489-499.
  38. Singh, M.P., S.K. Pandey, M. Singh, P.C. Ram and B.B. Singh. 1990. Photosynthesis, transpiration, stomatal conductance and leaf chlorophyll content in mustard genotypes grown under sodic conditions. Photosynthetica 24:623-627.
  39. Tang, L., S.Y. Kwon, S.S. Kwak, C.K. Sung, and H.S. Lee. 2003. Susceptibility of two potato cultivars to various environmental stresses. Kor. J. Plant Biotechnol. 30:405-410. https://doi.org/10.5010/JPB.2003.30.4.405
  40. Turan, M.A., N. Turkmen, and N. Taban. 2007. Effect of NaCl on stomatal resistance and proline, chlorophyll, Na, Cl and K concentrations of Lentil plants. J. Agron. 6:378-381. https://doi.org/10.3923/ja.2007.378.381
  41. Wang, S.Y., H.J. Jiao, and M. Faust. 1991. Changes in ascorbate, glutathione, and related enzyme activities during thidiazuroninduced bud break of apple. Physiol. Plant. 82:231-236. https://doi.org/10.1111/j.1399-3054.1991.tb00086.x
  42. Wang, Y. and N. Nil. 2000. Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. J. Hort. Sci. Biotechnol. 75:623-627. https://doi.org/10.1080/14620316.2000.11511297
  43. Yamamoto, A., I.S. Shim, S. Fujihara, T. Yoneyama, and K. Usui. 2004. Effect of difference in nitrogen media on salt-stress response and contents of nitrogen compounds in rice seedlings. Soil Sci. Plant Nutr. 50:85-93. https://doi.org/10.1080/00380768.2004.10408455
  44. Yamaguchi, K., Y. Takahashi, T. Berberich, A. Imai, A. Miyazaki, T. Takahashi, A. Michael, and T. Kusano. 2006. The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett. 580:6783-6788. https://doi.org/10.1016/j.febslet.2006.10.078
  45. Youn, A.R., K.H. Kwon, B.S. Kim, S.H. Kim, B.S. Noh, and H.S. Cha. 2009. Effect of agrichemical during cultivation on quality and shelf-life of fresh-cut lettuce. J. Kor. Soc. Food Sci. Nutr. 38:217-224. https://doi.org/10.3746/jkfn.2009.38.2.217
  46. Zapata, P.J., M. Serrano, M.T. Pretel, A. Amoros, and M.A. Botella. 2003. Changes in ethylene evolution and polyamines profile of seedlings of nine cultivars of Lactuca sativa L. in response to salt stress during germination. Plant Sci. 164:557-563. https://doi.org/10.1016/S0168-9452(03)00005-0