DOI QR코드

DOI QR Code

액상공정으로 제작된 ZrInZnO 박막 트랜지스터의 전기적 특성에 관한 연구

Study on the Electrical Characteristics of Solution-processed ZrInZnO Thin-film Transistors

  • 정태훈 (연세대학교 전기전자공학과) ;
  • 김시준 (연세대학교 전기전자공학과) ;
  • 윤두현 (연세대학교 전기전자공학과) ;
  • 정웅희 (연세대학교 전기전자공학과) ;
  • 김동림 (연세대학교 전기전자공학과) ;
  • 임현수 (연세대학교 전기전자공학과) ;
  • 김현재 (연세대학교 전기전자공학과)
  • Jeong, Tae-Hoon (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Si-Joon (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Yoon, Doo-Hyun (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Jeong, Woong-Hee (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Dong-Lim (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Lim, Hyun-Soo (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Hyun-Jae (School of Electrical and Electronic Engineering, Yonsei University)
  • 투고 : 2011.05.03
  • 심사 : 2011.05.17
  • 발행 : 2011.06.01

초록

Soution-processed ZrInZnO (ZIZO) thin-film transistors (TFTs) with varying Zr content were fabricated. The ZIZO TFT (Zr=20 at. %/Zn) has an optimal performance with the saturation field effect mobility of 0.77 $cm^2/Vs$, the threshold voltage (Vth) of 2.1 V, the on/off ratio of $4.95{\times}10^6$, and subthreshold swing (S.S) of 0.73 V/decade. Using this optimized ZIZO TFT, the positive and negative gate bias stress according to annealing temperature was also investigated. While the Vth shifts dramatically after 1,000 s of both gate bias stresses, variations in the S.S are negligible. It suggests that electrons or holes are tem porarily trapped in the gate insulator, the semiconductor, or the interface between both layers.

키워드

참고문헌

  1. K. B. Park, J. B. Seon, G. H. Kim, M. Yang, B. Koo, H. J. Kim, M. K. Ryu, and S. Y. Lee, IEEE Electron Device Lett., 31, 311 (2010). https://doi.org/10.1109/LED.2010.2040130
  2. Y. J. Chang, D. H. Lee, G. S. Herman, and C. H. Chang, Electrochem. Solid State Lett., 10, 135 (2007).
  3. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hiromich, and H. Hosono, Nature, 432, 488 (2004). https://doi.org/10.1038/nature03090
  4. E. M. C. Fortunato, L. M. N. Pereira, P. M. C. Barquinha, A. M. B. Rego, G. Goncalves, A. Vila, J. R. Morante, and R. F. P. Martins, Appl. Phys. Lett., 92,222103 (2008). https://doi.org/10.1063/1.2937473
  5. D. H. Cho, S. Yang, C. Byun, J. Shin, M. K. Ryu, S. H. K. Park, C. S. Hwang, S. M. Chung, W. S. Cheong, S. M. Yoon, and H. Y. Chu, Appl. Phys. Lett., 93, 142111 (2008). https://doi.org/10.1063/1.2998612
  6. J. S. Park, K. S. Kim, Y. G. Park, Y. G. Mo, H. D. Kim, and J. K. Jeong, Adv. Mater., 21, 329 (2009). https://doi.org/10.1002/adma.200802246
  7. W. H. Jeong, G. H. Kim, H. S. Shin, B. D. Ahn, H. J. Kim, M. K. Ryu, K. B. Park, J. B. Seon, and S. Y. Lee, Appl. Phys. Lett., 96, 093503 (2010). https://doi.org/10.1063/1.3340943
  8. G. H. Kim, W. H. Jeong, B. D. Ahn, H. S. Shin, H. J. Kim, H. J. Kim, M. K. Ryu, K. B. Park, J. B. Seon, and S. Y. Lee, Appl. Phys. Lett., 96, 163506 (2010). https://doi.org/10.1063/1.3413939
  9. D. N. Kim, D. L. Kim, G. H. Kim, S. J. Kim, Y. S. Rim, W. H. Jeong, and H. J. Kim, Appl. Phys. Lett., 97, 192105 (2010). https://doi.org/10.1063/1.3506503
  10. S. J. Kim, G. H. Kim, D. L. Kim, D. N. Kim, and H. J. Kim, Phys. Status Solid A, 207, 1668 (2010). https://doi.org/10.1002/pssa.200983724
  11. S. J. Kim, D. L. Kim, D. N. Kim, and H. J. Kim, J. Inf. Disp., 11, 165 (2010). https://doi.org/10.1080/15980316.2010.9665846
  12. S. M. Yoon, S. H. Yang, S. W. Jung, C. W. Byun, S. H. K. Park, C. S. Hwang, and H. Ishiwara, Electrochem. Solid State Lett., 13, 141 (2010). https://doi.org/10.1149/1.3312900